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Abstract Short-term open-pit mine production scheduling is a challenging

task that must deal with several objectives, like maximization of the pro-

ductivity of equipment (plant and mining), compliance of ore extraction, and

others. Unfortunately, there are trade-offs between these objectives that make

the problem of finding well-balanced short-term schedules complex to handle.

To overcome this problem, we propose a methodology based on mathemati-

cal programming and a hierarchical method to generate short-term open-pit

schedules considering multiple objectives. The mathematical program allo-

cates shovels to different mining faces, including stockpiles. It considers plant

capacity constraints, ore blending, precedences between mining faces, shovels
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throughput, and shovels’ traveling time between mining faces. We also propose

several compliance indicators, which we use to evaluate and compare different

short-term schedules. We apply the proposed optimization model to a real

iron open-pit mine to compare how the hierarchical method performs with

regards to a single objective approach and show increases of waste extraction

compliance up to 29% (when priority is production) and of 73% in production

(when the priority is waste extraction). Moreover, in general, we observe that

the hierarchical method produces more robust plans.

1 Introduction

Open-pit mining is a technique for the extraction of ore deposits near the

Earth’s surface that permits access to valuable sections of the deposit with

relative ease, therefore reaching high production capacities and lower cost

compared to underground mines. However, because the ore distribution is not

uniform in the deposit, the excavation process may provide access to parts

with various ore content levels (thus, economic value) or even require remov-

ing unwanted material (“waste”). Therefore, the order in which different parts

of the deposit are accessed has an enormous impact on a mine operation’s

economic value.

Because of its complexity, the process of planning an open-pit mine is

organized into different levels: strategic (long-term), tactical (medium-term),

and operational (short-term) levels (L’Heureux et al., 2013). These levels of
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planning are oriented toward different purposes and designed to work with

various levels of information.

Strategic mine planning seeks to maximize the mine operation’s economic

value, usually associated with the Net Present Value (NPV). For this, it de-

termines what portions of the ore body should be extracted, when this should

happen, the total lifespan of the mine, the production rate, and the investment

amount. A principal result of a long-term planning is a production schedule,

determining the tonnage of waste and ore to be mined from each bench-phase

for each year over the scheduling horizon.

Tactical scheduling determines the mining sequence for up to a typical

period of 5 years based on the production rate constraints. It takes as input

the production schedule determined in the long-term plan and defines what

portions will be extracted to meet the production targets with the available

resources so that the costs of this extraction are adequately projected and

minimized.

Lastly, operational scheduling covers time horizons that may span from

a week and up to a year. Within this context, short-term planning seeks to

ensure the feasibility of the long and medium-term mine production schedules

(Smith, 1998) by delivering the ore tonnes and grades to the processing plant

(Chanda, 1990).

To reach long-term goals, short-term planners look to make the best possi-

ble use of all available resources: processing facilities, mining zones, stockpiles,

and equipment fleet. Unfortunately, there may exist some trade-offs between
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all these aspects. For example, it may be possible to maximize the produc-

tivity of loading equipment by assigning them to mining faces closer to their

destination. However, as it turns out, these faces tend to be zones of waste

because they are nearer to the surface. Similarly, a mining operation may need

blending material from different areas of the mine to obtain certain product

quality, thus relocating loading equipment and decreasing its productivity. All

this implies that considering only a single criterion for optimization may harm

other aspects which are relevant too.

Another relevant aspect of short-term planning is related to stockpiles.

Stockpiles are essential because they allow keeping the balance between the

ore extracted from the mine and the processing capacity: First, stockpiles act

as buffers so that processes before them and processes after them can oper-

ate without being constrained by each other. Second, stockpiles can be used

to control the blending of material to be processed, reducing its variability.

Finally, stockpiles can be used to sort material by grade or other properties

(Jupp et al., 2014, Robinson, 2004).

All the issues mentioned above make the problem of short-term mine plan-

ning hard to be modeled. In fact, contrary to what happens in long-term and

medium-term planning, the short-term planning problem for open-pit mines

has not been as widely studied (Blom et al., 2018); therefore, there is a lack of

mathematical models and optimization tools to support short-term decisions.

Because of the above, we propose a Mixed-Integer Linear Programming

(MILP) problem to generate short-term open-pit schedules. The optimization
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model’s major decision is the assignment, over several time-periods, of shovels

to mining faces and stockpiles but accounting for the time required to move

from one mining face to another. This integration allows the model to link and

balance several of the objectives mentioned before.

The model takes as input production targets (i.e., material to be sent

to the mill), mining targets, and waste extraction targets, and looks for a

shovel assignment to achieve these targets while also considering the following

constraints: plant capacity, ore blending requirements, precedences between

mining faces, shovels throughput, mine sequencing and movement of shovels

between sectors of the mine.

We utilize the model in two configurations: the single objective approach,

which aims to optimize a relevant indicator, and the hierarchical method

(Grodzevich and Romanko, 2006) that utilize priorities to sequentially ad-

dresses different objectives.

This work’s principal contribution is the MILP to generate a short-term

schedule for open-pit mines considering loading equipment allocation, stock-

piles, and three objectives for optimization: loading equipment productivity,

plant productivity, and grade compliance. However, the paper also contributes

with several indicators to assess and compare the different short-term sched-

ules. Finally, the article presents the model’s application to an iron open-pit

mine case study showing the model’s validity in different scenarios.

The remainder of this paper is organized as follows. Section 2 provides

a review of the related work associated with short-term open-pit scheduling.
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Section 3 states the problem being solved by the optimization model. Section

4 presents the proposed optimization model. Section 5 describes the real-scale

open-pit mine case study and outlines the scenarios that are analysed. Section 6

reports and discusses the results of the case study. Finally, Section 7 concludes

the study and outlines future work.

2 Related work

This section briefly reviews some studies associated with production scheduling

at the long- and short-term horizons. We pay special attention to optimiza-

tion models considering stockpiles and multiple-objectives, which are the core

elements of the model proposed in this work.

Most optimization models used to support open-pit planning rely on a

discretization of the deposit called the block model. A block model is a 3D

array of blocks with spatial coordinates and a vector of relevant attributes

(tonnage, rock type, ore grades, and others) estimated using samples of the

deposit, geologic models, and geostatistical methods. Therefore, optimization

models abstract the scheduling process, computing for each block, its extrac-

tion period, and its best destination for processing, stocking, or dumping. The

primary constraint in open-pit mining is that extraction must happen so that

the pit walls do not collapse. This is modelled using precedence constraints:

For each block, a specific set of blocks (called predecessors) must be extracted

to gain access to that block while keeping the walls of the pit stable.
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The open-pit mine production scheduling problem (OPMPSP) consists of

scheduling the blocks’ extraction to maximize the Net Present Value (NPV)

(Samavati et al., 2018), subject to precedence and capacity constraints. The

first formulation of OPMPSP as an integer linear program is due to Johnson

(Johnson, 1968). Over the years, several authors have extended this model.

The Precedence Constrained Production Scheduling Problem (PCPSP) (Es-

pinoza et al., 2013) is currently regarded as the reference problem for model-

ing long-term open-pit mining. This model considers several time-periods and

multiple potential destinations of the blocks and slope constraints; however, it

also considers an arbitrary number of side constraints, including capacity and

blending restrictions. Unfortunately, neither OPMPSP nor PCPSP consider

stocks in their modeling, except as potential block destinations from where no

material is retrieved during the planning period.

Indeed, stockpiles are hard to model using linear models because of the

mixing of material produced in these piles. As Moreno et al. (2015) states, the

inclusion of stockpiles in models for the open-pit production-scheduling prob-

lem has been avoided, due to the difficulty of correctly modeling the mixing

behavior of the material inside a stockpile. Nevertheless, some authors have

proposed various approaches to address this issue.

A few nonlinear optimization models have been proposed to address the

open-pit mine production scheduling problem with stockpiles. Tabesh et al.

(2015) states that stockpiling should theoretically be modeled nonlinearly to

optimize a comprehensive open-pit mine plan, and linearized the formulation
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by using a “sufficient number” of stockpiles, each with a tight range of grades.

Bley et al. (2009) proposed a quadratic model for production scheduling that

assumes ‘instant-mixing” inside the stockpile, that is, that all grades of mate-

rial inside the stockpile are averaged. However, this type of model is compu-

tationally very difficult to solve, limiting its use in real instances. Bley et al.

(2012b) provides more details on computational approaches for solving these

models. Bley et al. (2012a) address the solution of the open-pit mine produc-

tion scheduling problem (OPMPSP) with a single stockpile (OPMPSP+S).

The addition of a stockpile adds a relatively small number of quadratic con-

straints to the formulation of the OPMPSP and turns the problem from a

mixed-integer linear into a mixed-integer nonlinear program.

Hoerger et al. (1999) assume that material sent to a stockpile must have

a grade within a specific range and that the grade of material extracted from

a stockpile is the minimum value of that range. Akaike and Dagdelen (1999)

consider that there are infinite potential stockpiles, so every block has its stock-

pile (i.e., there is no blending in the stockpile). Fu et al. (2019) models the

stockpiles using a series of grade bins, allowing the model to allocate material

with a different grade. The models of Moreno et al. (2017), Rezakhah and

Newman (2020), Rezakhah et al. (2020) utilize blending constraints to require

a constant grade in the stockpiles by forcing that the average grade sent to

each stockpile is known and fixed in advance. Moreno et al. (2017) proposed

several linear integer optimization problems to schedule open-pit mines consid-

ering stockpiling. Rezakhah et al. (2020) apply those models to an operational
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poly-metallic (gold and copper) mine, where stockpiles are used to blend ma-

terials based on multiple block characteristics. Rezakhah and Newman (2020)

extend the model to consider the deterioration of material when exposed to

the environment.

Asad (2005) presents a long-term cut-off grade optimization algorithm for

open-pit mining operations with stockpiling in a deposit with two economic

minerals. This algorithm is an extension of the theory of cut-off grades in

deposits of two economic minerals presented in Lane et al. (1984).

Finally, some articles account for stockpiles in the context of geological

uncertainty in the metal content, i.e., they incorporate the fact that geostatis-

tical methods produce only estimations of critical values like grades Kousha-

vand et al. (2014), Lamghari and Dimitrakopoulos (2016), Levinson and Dimi-

trakopoulos (2019), Ramazan and Dimitrakopoulos (2013), Silva et al. (2015).

The works mentioned above addressed block scheduling in a long-term set-

ting; therefore, they are not concerned with operational aspects like equipment

assignment, which is central to the problem we address. We now review some

works oriented to the short-term.

Fioroni et al. (2008) seeks to reduce mine costs using optimization and

simulation models to generate short-term production schedules that can be

executed in the mine, considering the actual use of mining equipment.

Rehman and Asad (2010) propose a MILP model to define the short-term

sequence mining of blocks of a limestone quarry to meet plant quantity and
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quality requirements at the lowest possible cost. Contrary to our approach,

their model does not consider shovel allocation to quarry blocks.

Eivazy and Askari-Nasab (2012) develop a MILP model to generate short-

term schedules. The model minimizes the total cost, considering: mining cost,

processing cost, waste rehabilitation cost, rehandling cost and total haulage

cost. The model takes into account multiple destinations and models: stock-

piles as buffers and blending location, horizontal directional mining, and de-

cisions on-ramps, blending constraints at the processing plants, mining and

processing capacities, and mining precedences. The model assumes that stock-

piles’ output grade is equal to their average grade; however, it does not consider

the allocation of loading equipment in the mine or to stockpiles.

Torkamani and Askari-Nassab (2015) integrates the optimal scheduling of

short-term production with the simulation of the shovel-truck operation; based

on this, it is possible to choose the optimal number of shovels and trucks needed

to fulfill the mine schedule.

Upadhyay and Askari-Nasab (2016, 2018, 2019) present an MILP problem

to allocate shovels to mine faces to maximize production, achieve the desired

head grade and tonnage at crushers, and minimize shovel movements.

Mousavi et al. (2016) propose a MILP problem that considers precedences,

machine capacity, grade requirements, processing demands, and stockpile man-

agement. The objective function is to minimize the total cost, including the

cost of rehandling, holding, misclassification, and drop-cut. Their model con-

siders the assignment of loading equipment in the mine but not to stockpiles.
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Matamoros and Dimitrakopoulos (2016) propose a formulation based on

stochastic mixed-integer programming to address scheduling of open-pit mines

in the short-term. The model considers uncertainty in both ore body metal

quantity and quality. It also takes into account fleet parameters and equipment

availability. The model allocates shovels to mine sectors and the number of

truck trips per shovel. The objective function considers operating fleet cost

and mining cost. Stocks are modeled implicitly by considering a penalization

cost due to overproduction at each time-period.

Blom et al. (2017) apply the hierarchical method to generate multiple,

diverse short-term schedules while optimizing for a customizable, prioritized

sequence of objectives. They use a rolling horizon-based algorithm to resolve

instances.

Upadhyay and Askari-Nasab (2019) uses a mixed-integer linear objectives

programming model (MILGP) to obtain the optimal allocation of shovels and

trucks to meet the objectives aligned to long-term scheduling: maximize pro-

duction, minimize deviations of the head grade, minimize deviations of the

plant feed tonnage, and minimize operating costs.

Alexandre et al. (2019) deals with the truck dispatching problem. That is,

the efficient allocation of trucks to shovels in operation at open-pit mines. The

work present multi-objective strategies for solving the problem of dynamically

allocating a heterogeneous fleet of trucks in an open-pit mining operation.

Both and Dimitrakopoulos (2020) presents a stochastic optimization model

that optimizes the short-term extraction sequence of an open-pit mine allo-
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cating shovels and trucks to mine faces. The model considers geological and

equipment performance uncertainty.

Shah and Rehman (2020) describes a mixed integer linear programming

model that optimizes the short-term extraction sequence of an cement quarry

allocating shovels and trucks to mine faces. The objective function minimizes

the truck and shovel total cost, subject to quantity and quality constraints.

Benlaajili et al. (2020) presents a tuck-shovel dispatching model that allo-

cates shovels to mine faces and shovels to shovels in two main steps. The first

step proposes a modeling of the allocation of shovels problem as a vehicle rout-

ing problem. In the second step, a mixed integer linear programming model is

proposed to determine the optimal number of trips required to transport the

quantity of ore from each loading point to each dumping site, this model is

used to dispatch available trucks to the appropriate shovel.

Table 1 summarizes and compares the characteristics of the short-term

open-pit mine scheduling articles that we have reviewed so far.

With regard to works in Table 1 that consider multiples objectives, Fioroni

et al. (2008) considers the following objectives: maximizing ore production,

minimizing grade deviation to ore plant, and minimizing the loss of produc-

tion due to load equipment movements. Torkamani and Askari-Nasab (2011)

minimizes the operational cost associated with the mine considering: cost of

moving shovels to new faces, total transportation cost of trucks moving to the

waste dump or to the mill, and cost of negative deviation from the produc-

tion target at the mill. Eivazy and Askari-Nasab (2012) also minimizes the
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Shovel allocation in mine faces ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Shovel allocation in stockpiles ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Explicit modeling of stockpiles ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗

Truck allocation in mine faces ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Grade uncertainty ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

Equipment performance uncertainty ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

Multi-objective optimization

(not only costs)

✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Table 1: Comparison of short-term open-pit mine scheduling articles.

total cost, considering: mining cost, processing cost, waste rehabilitation cost,

rehandling cost and total haulage cost. Mousavi et al. (2016) minimizes the

total cost, which includes rehandling and holding costs, misclassification and

drop-cut costs. The misclassification cost is monitored to ensure that mate-

rial is assigned to the right destination. A drop-cut is a condition such that a

block is extracted while all the adjacent blocks have not yet been extracted.

In contrast to a drop-cut, a side-cut is performed when the excavator is lo-

cated in the same bench as the block. Finally, a drop-cut cost is considered in
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order to give priority to the side-cut extraction, unless a new working bench

is required to be opened. The optimization problem of Matamoros and Dim-

itrakopoulos (2016) minimizes the overall extraction cost. This cost considers

the following components: cost of extracting material from the mine, hauling

cost given the uncertainty in the trucks’ hauling time and mechanical avail-

ability, cost of shovel movements among sectors, lack of production per shovel

given uncertainty in its mechanical availability, penalize the lack of mining

blocks that match the required mining width and minimize the geological

risk with respect to the quality and quantity of ore production and penalize

deviation from production targets. Blom et al. (2017)´s formulation considers

multiple objectives such as maintaining alignment with a longer-term plan and

maintaining product grades within desired bounds. The optimization problem

described by Upadhyay and Askari-Nasab (2019) considers the following ob-

jectives: maximization of production, meeting the desired feed to processing

plants, meeting the grade blending requirements of the processing plants, and

minimizing shovel movements. The objective function for the truck allocation

described by Alexandre et al. (2019) is to maximize production and minimize

costs. The optimization model proposed by Both and Dimitrakopoulos (2020)

maximizes metal production and profit of the mining complex as a whole, in-

stead of minimizing operational costs. It considers: revenue and costs in the

mining complex, penalties for deviations from production targets, reduce the

risk of not achieving shovel production targets per mining area, reduce risk of

falling short of truck haulage capacity, shovel movement cost, account for the
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cost of trucks in operation, and smoothing of the mining schedule. For this

part, the objective function of the optimization problem described in Shah

and Rehman (2020) considers the minimization of truck/shovel cost. Finally,

Benlaajili et al. (2020) addresses two problems. The first problem (the alloca-

tion of shovel to mining faces) minimizes the total travel cost of shovels. The

second problem (allocation of trucks to shovels) minimizes the number of trips

required to transport ore during a working shift.

From Table 1 we observe that the only two works that consider uncertainty

are Matamoros and Dimitrakopoulos (2016) and Both and Dimitrakopoulos

(2020). These articles take into account geological uncertainty and the equip-

ment performance uncertainty. We understand that addressing the mentioned

uncertainties is critical to risk assessment and decision making in short-term

open-pit mine production scheduling; however, we consider stochastic mod-

eling out of the scope of this study and a potential improvement for future

research.

2.1 Multi-objective optimization

There are several different multi-objective evolutionary algorithms like the ge-

netic algorithm which fundamentally operates on a set of candidate solutions.

The weighted sum and hierarchical method are commonly used to optimize

multiple objectives.

In the weighted sum method, each different objective is assigned a positive

coefficient that represents its relative importance. Then, a unified objective
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function is constructed as the addition of the objectives multiplied by their

corresponding weights.

In the hierarchical method, the decision-maker ranks the objective func-

tions, sorting the objectives in descending order of importance. In this method,

as many optimization problems as objective functions are solved sequentially,

following the rank previously defined. Each problem is then solved for its cor-

responding objective, but with an additional constraint requiring it to perform

as well as the optimal solutions of the criteria already considered.

Figure 1 provides a schematic view of this procedure for N objective func-

tions to be minimized in descending order of importance. The j-th objective

function is denoted as Aj , and Aj as the optimal value of this function in the

j-th problem. The set of general constraints of the problem are represented as

x ∈ S, where x is the vector of variables and S the set of feasible points. The

parameters λi ≥ 1,∀i ∈ {1, ..., N} represent the tolerance of the deviation of

the value Ai. Notice that if λi = 1, it means that the i + 1-th sub-problem

must find a solution that replicates the i-th optimum value obtained for the

previous sub-problem, while λ > 1 implies that some deterioration of the i-th

objective value is allowed.

At the first iteration, the first problem is solved and so a solution x1 with

value A1 = A1(x1) is found. Then, for the j-th iteration, solutions xk, k =

1, . . . , j − 1 have been found, each with a value Ak = Ak(xk), hence the

constraints Ak(x) ≤ λkAk are added for k = 1, . . . , j−1 and the problem with



Title Suppressed Due to Excessive Length 17

Fig. 1 Scheme of the hierarchical method considering N objectives.

objective function Aj is solved. The process continues until the last problem,

with j = N is solved and its solution xN and its value AN (xN ) are reported.

The hierarchical method seems more suited for short-term scheduling and

therefore is the one utilized in this article. In general, the articles that con-

sider multiple objectives described in Table 1 use the weighted sum method to

perform multi-objective optimization. Applying the weighted sum method is

straightforward and easier to understand than the hierarchical method. How-

ever, it requires selecting the weight coefficients, which makes its application

difficult (Grodzevich and Romanko, 2006). An advantage to use the hierarchi-

cal method to perform a multi-objective optimization is that we do not have to

compute or select the value of the weight coefficients. As a drawback, we need

to solve n optimization problem to perform a multi-objective optimization

with n hierarchical objectives.
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3 Problem statement

This section provides an overview of all the modeling aspects incorporated

in the mathematical model. The precise optimization problem, notation and

parameters are introduced in Section 4.

Each mining face is characterized by a tonnage, type of material (ore or

waste), and the grade of the metal of interest. We assume two kinds of faces:

mine or stockpiles. Mining faces only allow extraction, while stockpile faces

also allow the accumulation of material extracted at the mine. Mining faces

are also related to each other by precedences, meaning that some need to be

depleted before others’ extraction begins.

The material at the mining faces may contain different components (for

example, different metals or pollutants). We will assume that this composition

is known and there are targets or ranges allowed at the plant, for each period

and component.

In short-term planning, the traveling time of shovels can be a significant

portion of the total time; thus, we consider the travel time required to move

a shovel between two different faces as not available for production.

In our approach, stockpiles are potential destinations of material extracted

at the mine and locations to which shovels can be assigned. In terms of the

grades, we adopt the same model as (Hoerger et al., 1999) and assume that

the stockpiles are homogeneous and the ore reclaimed from each stockpile has

a grade equivalent to the average grade of the stockpile, which is constant

over the scheduled horizon. Moreover, we assume that the stockpile to which
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the face sends its material is defined in advance, i.e., the model decides the

amount to be sent but not what stockpile to use.

We consider that a shovel is unavailable during meals, shift changes, main-

tenance, and failures and assume that the total unavailable time per period

is known in advance for every shovel; thus, the model can use a shovel only

during its available time. Notice that the model does not utilize the internal

distribution of unavailable time explicitly. In particular, no maintenance or

failures are incorporated directly and the model can use only available time.

The available time of a shovel during a period can be split as follows:

AvailableT ime = TravelingT ime + OperationT ime + StandByT ime. Trav-

eling occurs when the shovel moves from one mining face to another during a

certain planning period. Operational time happens when the shovel is loading

material and sending it to its destination. Stand-By time occurs only in the

case when the face is depleted, that is if the operational time is more than

enough to load all the material.

To compute the material loaded, we consider that shovels have a known

operative throughput that quantifies the material that they can load per unit

of time (tonnes per hour). We assume that this parameter depends on the

shovel and the mining face. This is to allow the model to consider different

shovels, but also different conditions that may effect the performance of a

shovel, like limited space for operating the equipment, delays due to long

hauling distances, and others.
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Fig. 2 Conceptual diagram of a material’s flow network in a mining operation.

We assume that the time (in hours) that is required by a given shovel to

move between two mining faces is also known in advance. However, as a shovel

may visit more than one face per time-period, we utilize routes. A route is a list

of sectors in which a shovel travels sequentially within a time-slot. Thus, the

traveling time is computed as the addition of all movements between mining

faces in the route.

We propose several indicators to compare and evaluate the performance of

the results beyond the optimization targets. These indicators aim to measure

the compliance of the plan, i.e., how close the material flows scheduled by

the plan are to their targets. The indicators are based on the material flows

depicted in Figure 2: O, the tonnage of ore sent directly from the mine to the

processing facilities; R the tonnage of rehandling, that is, material sent from

stockpiles to the processing facilities; S, the tonnage of material sent from the

mine to stockpiles; and W, the tonnage of material sent to waste dumps.

Two critical material flows set by long-term scheduling are: P = R + O,

the total material sent to the plant, and M = S +O +W , the total material

extracted from the mine. Therefore, we consider total targets P 0 and M0,



Title Suppressed Due to Excessive Length 21

respectively, to be moved during the planning horizon. We consider also W 0,

a waste removal target. It is worth noting that, W 0 is not usually considered

in long-term planning, where all ore extraction occurs during the length of

time being scheduled; however, in short-term planning it is a critical target,

because it enables reaching ore in periods beyond the planning horizon.

Based on the material flow targets described before, we introduce compli-

ance performance indicators, which are presented in Table 2: waste extraction,

plant utilization, plant utilization due to ore extracted from the mine, and ore

extraction. These indicators will be later used to analyze the plans obtained

using the model.

3.1 Multiple criteria for measuring short-term planning performance

We consider several potential criteria (and therefore objective functions) to be

minimized using the model. In this article, we focus on the first three of the

list below, although the model could be used also to analyze the others:

– ∆O is the deviation (in tonnage) between ore sent to the plant from the

mine and the plant capacity.

– ∆P is the deviation (in tonnage) between ore sent to the plant from the

mine and stockpiles and the plant capacity.

– ∆W is the deviation (in tonnage) between waste hauled and its target.

– ∆D is the deviation (in tonnage) between ore sent to the plant and the ore

plant capacity per period.
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Index Formula Description

ΓW
W

W 0
· 100 Waste extraction compliance.

ΓP
O +R

P 0
· 100 Plant utilization.

ΓO
O

P 0
· 100 Plant utilization due to ore di-

rectly sent from mine.

ΓM
O + S

M0
· 100 Ore extraction compliance

Table 2: Compliance Performance indicators.

– ∆Gradej , the deviation (in tonnage) between the content of component j

sent to the plant and its target.

– TotalTravelT ime, the total traveling time of the shovel fleet (in hours).

– TotalTravelCost, the total traveling cost of the shovel fleet (in dollars).

4 Optimization model

This section presents in detail the mathematical model that implements the

problem described in the previous section as a mixed integer linear program.

The main decision made by the model is the allocation of loading equipment

to mining faces, which is done considering the fraction of a time-slot that the

shovel will be assigned and the fraction of time that it will be working in a

mining face.

4.1 Sets and Indexes

– p ∈ P, the set and index for shovels.
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– f, f ′ ∈ F , the set and indexes for mining faces.

– Fore,Fwaste ⊂ F , sets of mining faces that contain ore and waste, respec-

tively.

– Fsp ⊂ F set of mining faces that correspond to stockpiles. (Notice that

Fsp ⊂ Fore, because all stockpiles contain ore).

– t ∈ T = {1, 2, . . . , T}, the set and index for time periods. T is the time

horizon.

– j ∈ J , the set and index for material components to be controlled (like

grades, pollutants or others).

– r ∈ R, the set of routes. A route r is a ordered sequence of mining faces

r = (f1, f2, . . . , fk), for some k, which corresponds to the length of the

route, denoted as |r|.

– Rf , the set of routes that go through mining face f .

– Sf ⊂ F , f ∈ Fsp is the set of faces that send material to stockpile f .

– Hr, the set of routes whose last face is equal to the first face of route r.

– (f, f ′) ∈ Q, the set of precedences between the mining faces (f ′ has to be

mined before f).

4.2 Parameters

The parameters of the optimization model are detailed below.

– Tonf ≥ 0, the total material to be mined in mining face f (in tonnes).

– Gradej,f ∈ [0, 1], the fraction of the content j in the mining face f .

– Lengtht > 0, the length of period t (in hours).
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– AvlT imep,t, hours that shovel p is available during period t. This time

is computed considering the expected maintenance time MaintT imep,t,

failure time FailT imep,t, and the delays DelayT imep,t as follows:

AvlT imep,t = Lengtht − (MaintT imep,t + FailT imep,t +DelayT imep,t).

– Prodp,f , the tonnage of material that can be mined by the shovel p in the

mining face f . If θp,f is the estimated throughput of shovel p at face f (in

tonnes per hour) then

Prodp,f = AvlT imep,t · θp,f .

– Capt > 0, the processing capacity of the plant in period t (in tonnes).

– MinProdt > 0, the minimum desired tonnage to be sent to the ore pro-

cessing plant in period t (in tonnes).

– MaxGradej ≥ 0, j ∈ J , the maximum grade of the content j to be sent

to the ore processing plant in period t.

– MinGradej ≥ 0, j ∈ J , the minimum grade of content j to be sent to the

ore processing plant in period t.

– TravelT imep,r > 0, p ∈ P, r ∈ R is traveling time of shovel p along the

sectors of route r (in hours).

– MaxMovesp, p ∈ P, the maximum number of movements between sector

of shovel p over the scheduling horizon.

– TargetGradej ≥ 0, j ∈ J , the grade target of the content j by the ore

processing plant (in percentage).

– N , a very large number.
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4.3 Variables

To ease the reading of the model, all binary variables have a bar on top of it,

while continuous variables do not have the bar.

The decision variables are used to determine the location and duration of

shovel assignments, to control the movement of the shovels, to determine what

mining faces are currently active, and to account for tonnages:

– xp,f,t ∈ [0, 1], fraction of period t ∈ T that shovel p ∈ P is assigned to face

f ∈ F .

– x̄p,f,t ∈ {0, 1}, equal to 1 if shovel p ∈ P is allocated to mining face f ∈ F

in period t ∈ T , 0 otherwise.

– yp,f,t ∈ [0, 1], fraction of the period t ∈ T where shovel p ∈ P is operational

at mining face f ∈ F , i.e., the shovel is loading and sending material to its

destination.

– zp,f,t ∈ [0, 1], the time percentage of the period t ∈ T where shovel p ∈ P is

operative at mining face f ∈ F sending material to its predefined stockpile.

– w̄f,t ∈ {0, 1}, equals to 1 if mining face f ∈ F finishes its exploitation in

period t ∈ T or before, 0 otherwise.

– v̄p,r,t ∈ {0, 1}, equals to 1 if shovel p ∈ P goes through route r ∈ R in

period t ∈ T , 0 if not.

– βf,t ≥ 0, tonnage of the stockpile f ∈ Fsp at the end of the period t ∈

{0}∪T . (For simplicity, in the model, βf,t=0 is fixed to the initial tonnage

in stockpile f .)
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Thus, the optimization model decides if the material contained in mining

face of ore f that is not a stockpile is either sent directly to the plant or sent

to the predefined stockpile.

4.4 Objective functions

We consider different possible objective functions, which are listed below.

These objective functions correspond to deviations from targets like produc-

tion, desired grades, or waste removal.

The deviations that we consider were introduced in Section 3.1.The explicit

mathematical expressions of these quantities are presented in Equations (1)-

(8). (Notice that ∆D is defined in terms of ∆dt.)

∆O = M0 −
∑

p∈P,f∈Fore\Fsp,t∈T

Prodp,f · yp,f,t (1)

∆P = P 0 −
∑

p∈P,f∈Fore,t∈T

Prodp,f · yp,f,t (2)

∆W = W 0 −
∑

p∈P,f∈Fwaste,t∈T

Prodp,f · yp,f,t (3)

∆dt = Capt −
∑

p∈P,f∈Fore

Prodp,f · yp,f,t ∀t ∈ T (4)

0 ≤ ∆dt ≤ ∆D ∀t ∈ T (5)

∑
p∈P,f∈Fore

Prodp,f ·Gradej,f · yp,f,t +∆Grade−j,t −∆Grade+j,t =

TargetGradej ∀j ∈ J , t ∈ T (6)

∆Grade+j,t ≤ ∆Gradej ∀j ∈ J , t ∈ T (7)

∆Grade−j,t ≤ ∆Gradej ∀j ∈ J , t ∈ T (8)
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4.5 Constraints

Now, we present the mathematical expressions corresponding to the con-

straints of the optimization model. Second, we describe them in groups as-

sociated to different concepts. Due to the complexity of the model, we group

the constraints and provide separate descriptions.

4.5.1 Production constraints

Constraints (9)-(12) impose the ore plant capacity and models the distribution

of time of each shovel.

Constraint (9) imposes that the total material extracted in each mining

face along the planning horizon must be less or equal than the total material

contained in that mining face. Constraint (10) sets the minimum and maxi-

mum ore tonnages sent to the ore processing plant. Constraint (11) limits the

minimum and maximum contents of component j sent to the ore processing

plant. Constraint (12) models the shovel time by imposing that the effective

shovel time plus the shovel movement time between sectors are less than or

equal to the maximum shovel time utilization.

∑
p∈P,t∈T

Prodp,f · yp,f,t ≤ Tonf ∀f ∈ F (9)

MinProdt ≤
∑

p∈P,f∈F

Prodp,f · yp,f,t ≤ Capt ∀t ∈ T (10)
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MinGradej ·
∑

p∈P,f∈Fore

Prodp,f · yp,f,t ≤

∑
p∈P,f∈Fore

Gradej,f · Prodp,f · yp,f,t ≤

MaxGradej ·
∑

p∈P,f∈Fore

Prodp,f · yp,f,t ∀t ∈ T , j ∈ J (11)

∑
f∈F

Lengtht · xp,f,t +
∑
r∈R

TravelT imep,r · v̄p,r,t ≤ AvlT imep,t ∀p ∈ P, t ∈ T

(12)

4.5.2 Shovel allocation constraints

The dynamics of shovel assignment to mining faces is determined by con-

straints (13)-(17): Constraint (13) sets the precedences between faces, not

allowing a shovel to work in a face before the previous face is completely ex-

tracted. Constraint (14) imposes that a shovel can allocate time for working

in face f during period t only if it has been assigned to that f during t. Con-

straint (15) ensures that when a mining face is depleted, no other shovel can be

assigned to it (this prevents shovels from using ”old” mining faces as shortcuts

to move between different places in the mine). Constraint (16) imposes that

extraction of mining face f is not fulfilled in period t until all the material in

the face is completely extracted. Constraint (17) ensures that if extraction of

mining face f is concluded in a period t, then it remains in that state until

the end of the scheduling horizon.

xp,f,t ≤ w̄f ′t ∀(f, f ′) ∈ Q (13)

xp,f,t ≤ x̄p,f,t ∀p ∈ P, f ∈ F , t ∈ T (14)
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x̄p,f,t ≤ 1− w̄f,t−1 ∀p ∈ P, f ∈ F , t ∈ T \ {1} (15)

w̄f,t ≤
∑

p∈P,t∈T

Prodp,f
Tonf

· yp,f,t ∀f ∈ F , t ∈ T (16)

w̄f,t ≥ w̄f,t−1 ∀f ∈ F , t ∈ T \ {1} (17)

4.5.3 Shovel movement

Constraints (18)-(21) model the movement of each shovel between mine faces

of different sectors.

Constraint (18) sets the maximum number of movements between mining

faces along the scheduled horizon for each shovel. Constraint (19) ensures

that shovel p uses at most one route during period t. Constraint (20) makes

sure that, during period t, shovel is allocated only to mining faces that are

visited during that period. Constraint (21) ensures that the movement between

different faces is consistent, i.e., that the last mining face of the route r and

the first mining face of the r′ route must be equal.

∑
r∈R,t∈T

(|r| − 1) · v̄p,r,t ≤ MaxMovesp ∀p ∈ P (18)

∑
r∈R

v̄p,r,t ≤ 1 ∀p ∈ P, t ∈ T (19)

x̄p,f,t ≤
∑
r∈Rf

v̄p,r,t ∀p ∈ P, f ∈ F , t ∈ T (20)

v̄p,r,t ≤
∑

r′∈Hr

v̄p,r′,t−1 ∀p ∈ P, r ∈ R, t ∈ T \ {1} (21)
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4.5.4 Stockpile constraints

Constraints (22)-(25) models the stockpiles.

Constraint (22) defines the time allocated to send material to stockpiles.

Constraint (23) imposes that stockpiles do no sent material to stockpiles. Con-

straint (24) sets the initial ore tonnage of the mining faces that are of type

stockpile. Constraint (25) defines the inventory of ore tonnage in a stockpile.

yp,f,t + zp,f,t ≤ xp,f,t ∀p ∈ P,∈ F , t ∈ T (22)

zp,f,t = 0 ∀p ∈ P,∈ Fsp, t ∈ T (23)

βf,0 = Tonf ∀f ∈ Fsp (24)

∑
p∈P,f ′∈Sf

Prodp,f ′ · zp,f ′,t + βf,t−1 =
∑
p∈P

Prodp,f · yp,f,t + βf,t

∀f ∈ Fsp, t ∈ T (25)

5 Case study

In this section, we describe the real-scale open-pit mine case study and outline

the different experiments that were performed.

5.1 Mine operation description

The case study comprises mining faces distributed in six sectors, so the no-

tation for mining face names is N LEVEL, where N is the sector and LEVEL is
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the z coordinate. The mine planning horizon is one month, split into ten peri-

ods, each lasting between one and four days. The main parameters related to

the mine operation are summarized in Tables 3 to 7: Table 3 summarizes the

processing capacities and period lengths for each period (Prodt = 0,∀t, i.e.,

there is no minimum production requirement). Table 4 shows the parameters

related to shovels. Table 5 presents the tonnage of ore and waste contained in

each mining face. In this case study, mining face 6 1380 is the only stockpile

and has 0 tons of inventory at the beginning of the scheduling horizon. Table 6

presents the targets for production and material flow defined by the long-term

plan. Finally, Table 7 reports the traveling distance between sectors (travel

time for mining faces in the same sector is assumed to be negligible).

5.2 Experimental design

The model is used under different configurations to analyze how the per-

formance indicators presented in Section 3.1 change under different circum-

stances. There are a total of 28 configurations, which are obtained by consid-

ering the alternatives described below. The remaining constraints and param-

eters are common to all instances.

– Optimization criteria. In this case the following deviations are consid-

ered as objectives for minimization (a) plant utilization (∆P ), (b) waste

extraction (∆W ), and (c) plant utilization due to ore directly sent from

mine (∆O) (see Section 4). Each of these criteria is evaluated using a single-

step optimization and several two steps hierarchical configurations. Table 8
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Period
Period

length [days]

Ore plant

capacity [kt]

1 1 0

2 4 42

3 3 0

4 4 42

5 3 0

6 4 42

7 3 0

8 4 39

9 3 0

10 2 15

Total 31 180

Table 3: Length of periods and ore plant capacity.

Shovel
Effective

throughput [t/h]

Maximum

utilization [%]

Speed

[km/h]

1 1,350 43 2

2 1,300 35 2

3 1,200 47 15

4 1,150 63 7

5 1,150 45 7

6 1,200 40 15

Table 4: Shovel fleet parameters.
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Mining face Sector Waste [kt] Ore [kt]

1 1380 1 335 4

2 1330 2 40 2

2 1320 2 299 41

3 1280 3 21 2

3 1270 3 102 20

3 1260 3 131 10

3 1250 3 22 2

3 1240 3 618 94

4 1230 4 85 4

5 1240 5 59 0

5 1230 5 288 1

6 1380 6 0 0

Total tonnage 1, 999 180

Table 5: Ore and waste tonnage of mining faces (in [kt]).

Indicator Value [kt] Description

P 0 180 Total Ore sent to the

plant.

W 0 1,999 Total waste movement.

M0 180 Total extracted mate-

rial from the mine.

Table 6: Material flow targets for the planning horizon.
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Sectors 1 2 3 4 5 6

1 - 1.7 2.4 2.8 3.2 2.4

2 1.7 - 0.7 1 1.5 1.6

3 2.4 0.7 - 0.4 0.5 1.3

4 2.8 1 0.4 - 0.1 1.8

5 3.2 1.5 0.5 0.1 - 2.1

6 2.4 1.6 1.3 1.8 2.1 -

Table 7: Distance between sectors (in km)

summarizes the criteria considered for the single optimization and hier-

archical optimization in each case. For example, configuration ∆P (∆W )

corresponds to the case where ∆P is minimized subject to ∆W , i.e., first

the waste deviation ∆W is minimized and then plant deviation ∆P is min-

imized, subject to the waste deviation, hierarchically. Finally, in terms of

the tolerance parameters used in the hierarchical method, we set λi = 1,

that is, we do not permit any deterioration in the values when compared

with a single-objective approach. The main reason for this is that the focus

of this work is comparing how different configurations (objective functions

and hierarchies) impact the results in terms of their performance, which is

difficult to be done objectively if the λ parameters are different for each

configuration.

– Presence or absence of the stockpile. These two options are labeled

as “Yes” and “No”, respectively, in the corresponding results.
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Opt. criteria Notation Description of target to be Minimized

Single

∆W Waste deviation from target.

∆P Total ore sent to the plant deviation from pro-

duction target.

∆O Deviation of ore sent directly from the mine

to the plant.

Hierarchical

∆P (∆W ) Plant deviation s.t. minimum waste deviation.

∆W (∆O) Waste deviation s.t. minimum ore deviation.

∆W (∆P ) Waste deviation s.t. minimum plant deviation.

∆O(∆W ) Total ore deviation s.t. minimum waste devi-

ation.

Table 8: Different optimization of short-term objectives considered in case

study.

– Fixed or mobile shovel fleet. For this, two possible configurations are

considered: a static fleet, meaning that shovels must remain in the same

sector where they start, and fully mobile fleet, in which case shovels could

change sector at most once during the planning horizon.

5.3 Computational resources

All the schedules presented in this study were obtained on a 2.60 GHz Intel®

Xeon® CPU, with 256 GB RAM, running Windows 8®. The optimization

model was solved using Gurobi Optimizer version 8.1 (Gurobi Optimization,

2019). We impose a minimum MIP gap of 5.0% when solving the optimization

problems. We believe that this value is an adequate trade-off between the
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Result Running Time [min] MIP gap [%] Objective Value

Fleet Static Mobile Static Mobile Static Mobile

Stockpile No Yes No Yes No Yes No Yes No Yes No Yes

∆W 0.5 0.9 30.8 0.4 0.0 0.0 0.0 0.0 85 85 35 0

∆W (∆O) 1.3 0.7 7.0 23.3 0.0 0.0 3.1 0.0 767 767 111 767

∆W (∆P ) 1.5 22.5 10.2 102.9 0.0 0.0 0.0 4.1 767 767 112 767

∆O 0.3 0.6 6.3 15.5 0.0 0.0 0.0 0.0 49 49 18 11

∆O(∆W ) 0.4 0.7 116.3 31.7 0.0 0.0 0.2 3.5 85 85 49 26

∆P 0.3 0.5 4.9 34.4 0.0 0.0 0.0 0.0 49 49 18 10

∆P (∆W ) 0.5 16.0 45.9 518.2 0.0 0.0 0.0 4.7 85 85 49 26

Table 9: Computational results: Running Time, MIP Gap and Objective Value

for all optimization criteria.

resolution time and the objective function value. Indeed, Table 9 shows that

most of the solutions obtained are optimal and that the schedules with a MIP

gap above 3.0% are schedules associated with a mobile fleet of shovels, which

are more complex for the solver to obtain the schedule. We tried to solve all

the schedules with a gap of 0, but it was not possible in some instances due

to the high computational time.

6 Results and discussion

This section presents the results and discussion based on applying the opti-

mization model proposed to the open-pit mine case study.
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The resolution time, MIP gap, and objective function of the schedules are

presented in Table 9. Overall, we observe that excepting the case ∆P (∆W ),

computation times are reasonable (less than two hours). We also observe an

impact of ×2,×9 or even unbounded on ∆W (deviation of removed waste

material) if its optimization is secondary to production deviations ∆O or ∆P .

In contrast, if the deviation in waste is first optimized and then ∆P or ∆O are

optimized, the impact in production is significant. For example, the deviation

in ∆P and ∆O augments from 49 to 85 (i.e. , a 73.5% increase) when the

fleet is static. , and relatively more when the fleet is mobile, with an increase

of 172% in ∆P and ∆O if there is no stockpile, and about 160% if there

is a stockpile (again for both criteria). This implies that prioritizing waste

deviation can have a huge impact in the value of the plans.

We compare the schedules obtained in terms of the compliance performance

indicators presented in Table 2: waste movement (ΓW ), plant utilization (ΓP ),

mine to plant (ΓO), and mining extraction (ΓM ).

Table 10 presents the results in the case where the stocks are deactivated in

the model. We observe that for the static fleet, when the priority is production

(∆P and ∆O), the hierarchical method cannot improve the single-criteria

results, i.e., the performance of all strategies is equivalent, even in terms of

waste extraction. However, if the fleet is allowed to move between sectors, then

∆W (∆O) and ∆W (∆P ) generate plans which are equivalent for production

and mining performance, but with a significant increase in waste extraction,

improving the compliance from 65% to 94%. This improvement is important
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because the compliance of 65% means that the remaining 35% of waste would

be left to be extracted in future periods, thus negatively impacting production

for incoming months.

If the mine planner has the extraction of waste as a priority, then the hi-

erarchical method outperforms ∆O. Indeed, the method improves compliance

indicators associated to production (i.e., ΓP , ΓO) considerably. If the fleet is

static, these indicators fall from 73% to 53%, instead of 20%. When the fleet

is allowed to move between sectors, it can increase the production’s compliance

from 72% to 73%.

It is worth noting that having waste as the highest priority is not unre-

alistic. Whenever there is a shortage in equipment (for example, due to me-

chanical failures), mine operations prefer assigning equipment to ore mining

faces; therefore, delaying waste removal. As this effect accumulates over time,

planners eventually need to set waste extraction as a priority to not risk short-

ages of ore in the future. In such situations, the results suggests that using the

hierarchical approach would help planners to get up to date in waste removal

with a much better performance in terms of production, when compared to a

single approach that only aims to maximize waste extraction.

Table 11 presents the results when stocks are enabled in the model. First,

we observe that, as expected, stocks’ availability positively impacts compliance

overall. Second, the results are consistent with the ones for the case of Table 10:

– When waste extraction is a priority, the hierarchical method performs much

better than ∆W (which sends no mineral to the plant).
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Fleet Static Mobile

Indicator ΓW ΓP ΓO ΓM ΓW ΓP ΓO ΓM

∆W 96 20 20 20 98 72 72 72

∆W (∆O) 62 73 73 73 94 90 90 90

∆W (∆P ) 62 73 73 73 94 90 90 90

∆O 62 73 73 73 65 90 90 90

∆O(∆W ) 96 53 53 53 98 73 73 73

∆P 62 73 73 73 65 90 90 90

∆P (∆W ) 96 53 53 53 98 73 73 73

Table 10: Performance of the different strategies in terms of compliance (%) ,

when no stocks are available.

– When production has the highest priority, ∆P reaches values of ΓO and

ΓM , which suggests that it tends to rely on stocks more to achieve the

same ΓP = 73% than other strategies. Such a plan is risky because it may

deplete the stockpile and also more expensive because of the extra cost of

rehandling.

Overall, ∆W (∆O) and ∆W (∆P ) are the strategies with the best perfor-

mance in terms of production: for the static fleet, it produces the best results,

and for the mobile fleet case, it reaches a value of ΓP = 94%, which is 1%

lower than the maximum possible, but with the highest possible compliance

of material being sent directly from the mine to the plant.
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Fleet Static Mobile

Indicator ΓW ΓP ΓO ΓM ΓW ΓP ΓO ΓM

∆W 96 0 0 20 100 0 0 72

∆W (∆O) 62 73 73 80 62 94 94 95

∆W (∆P ) 62 73 73 80 62 95 50 95

∆O 62 73 73 73 62 94 94 95

∆O(∆W ) 96 53 53 60 100 86 86 100

∆P 62 73 44 73 62 95 68 95

∆P (∆W ) 96 53 53 53 100 86 86 100

Table 11: Performance of the different strategies in terms of compliance, when

stocks can be used.

Discussion

Overall, the model seems to abstract the mine operation in a proper manner

and follow some expected behaviour. For example, in general terms, compli-

ance increases with fleet mobility and with the possibility to use stockpiles.

Also, it tends to favor compliance indicators for the corresponding optimiza-

tion targets.

Aplying the hierarchical method to short-term planning generates plans

that are more balanced and robust when compared to single objective opti-

mization. This is because a single objective approach cannot take into account

other criteria and, therefore, may produce plans that either have a poor im-

pact during the planning horizon, or may hide problems for future periods of

time.
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The case study shows that the results can change substantially depending

on the criteria used and their rank for the hierarchical method. We consider

this, in fact, a feature of the mathematical model, which is flexible enough

to incorporate all the criteria, therefore providing the planner with different

choices, but also providing valuable information about potential issues. This

is the case, for example, of the plan for ∆P and stockpiles (Table 11), which

promises a high production compliance, but at the expense of delaying extrac-

tion from the mine.

The results are also interesting for the specific mine, because even in the

best cases, there seems to be a trade-off between production and waste extrac-

tion. Indeed, the best strategies for production may reach over 90% compli-

ance, but at the expense of having a 62% confidence for waste extraction, or

conversely, when a ΓW = 100% is reached, the compliance for production are

ΓP = ΓO = 86%).

Overall, the hierarchical method (especially ∆W (∆O) and ∆W (∆P )) gen-

erates plans that are more robust, because they do not leave production or

waste extraction for future periods and, therefore, promise a better adherence

to long-term plans and goals.

7 Conclusions and future work

In this study, we propose a MILP optimization model to address the problem

of shovel assignment and movement in an open-pit short-term mine context,

where production and waste extraction targets have been set by long-term
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plans and stockpiles are available as material buffers. The model can be used

with different optimization targets to implement single objectives or a hierar-

chical method that allows optimization of multiple criteria.

To evaluate the performance of the model with different criteria, we pro-

pose compliance performance indicators, which assess the quality of the plan

generated in terms of how close planned tonnages are with regards to their

targets. Thus, mine planners can use these indicators to evaluate and compare

multiple short-term schedules.

We apply the proposed optimization model to a real-scale open-pit mine

case study, over a time horizon of a month, in which mining faces are dis-

tributed over six mining sectors. The mine operation has one ore processing

plant and uses six shovels and has one stockpile for operation. In this setting,

we utilize the model to generate schedules under different scenarios; namely,

single-optimization or hierarchical optimization of different short-term objec-

tives, presence or absence of a stockpile, a mobile or a fixed shovel fleet. The

objective is to study the impact of the different scenarios on the schedule

indicators.

The results of the case study show that: (a) the hierarchical method can

generate short-term mine production schedules optimizing the considered ob-

jectives, (b) when applying the hierarchical optimization method, both the ob-

jectives and the order of optimization of these have a great impact on the values

of the different schedule indicators, (c) in general, schedules with a stockpile

obtain higher schedule indicators compared to the ones with no stockpile, and
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(d) schedules with a mobile shovel fleet obtain higher schedules’ indicators

than the ones with a fixed shovel fleet.

More importantly, in general, we observe that the plans generated using the

hierarchical method are more robust, because they minimize potential delays

on other criteria (not considered in the single objective approach). It is also

interesting to see that by using all proposed strategies for optimization (single

and hierarchical), the different plans can be analyzed in terms of their relative

strengths and weaknesses. That is, the planner can choose from different plans,

making a more informed decision.

As future work, we want to incorporate more aspects of the mining oper-

ation in the optimization model such as: scheduled shovel maintenance, allo-

cation of drilling rigs to mining faces, multiple ore processing plants, multiple

stockpiles, and grade blending in the stockpiles. We also intend to simulate the

short-term mine production schedule generated by the optimization model. We

plan to apply discrete-event simulation to assess the probability of compliance

of the schedule. Finally, we plan to incorporate both geological uncertainty

and equipment performance uncertainty in the optimization model.
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