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Highlights 
- A novel method to compute an optimal underground layout in which all stopes have positive 

economic value and are geotechnically stable. 
- A new mathematical program that selects the best set of stopes from the family of valid stopes. We 

propose two variations of the modelling, with different constraints for controlling the geometry of 
the sublevels in the layout design. 

- A theoretical result showing that one of the variations of the problem can be reduced to a shortest-
path problem; therefore, it can be solved efficiently up to optimality. 

  



A fast method to develop an optimal operational sublevel stope 
design 

Abstract 
Designing a sublevel stoping mine is a challenging task that requires determining the best layout in terms of 
economic value while respecting geomechanical constraints that limit the stopes' shape. Because of its 
relevance and challenging aspects, many authors have proposed methods to approximate or compute 
optimal stope designs or provided raw designs that can be used as a guideline. This paper follows previous 
approaches by approximating the shape of the stopes using the block model as support and then working in 
two stages: an enumeration algorithm generates all valid stopes, and then an optimization model is used to 
select the set of stopes with maximum value  However, our approach adds several improvements. Firstly, we 
ensure that the stopes generated in the first stage are profitable and geotechnically stable. Secondly, the 
mathematical model of the second stage incorporates the organization of stopes into drifts and levels, which 
yields a more operational layout.  Thirdly, the approach is suitable for algorithmic and theoretical 
contributions: We propose a fast heuristic algorithm for the general case of the model but also show that in 
some cases, the optimization problem reduces to finding the shortest path in an ad-hoc graph; thus, its 
optimum can be computed efficiently. Fourthly, we tested our approach on 4 block models involving 84,000 
to over 3 million blocks, or about 53,000 to 13.5 million valid stopes, respectively. The resulting optimal 
layouts are not only operationally feasible, but optimal solutions can be found in less than one hour using 
freely available linear programming solvers or in less than a second using a shortest-path algorithm when it 
applies. Finally, we performed sensibility analyses to assess the variability of the value and geometric location 
of optimal stopes showing that the solutions are robust and that even with perturbations of 20% in the 
economic values of the stopes, the value and tonnage of the optimal solutions do not change more than 0.4% 
and that in most cases, 95% of the extracted blocks remain the same.  

1 Introduction 
Long-term planning of an underground mine involves three main aspects: mine design, production 
scheduling, and equipment selection (Musingwini, 2016). Mine design is the most critical task because it is the 
foundation of the other two: it determines the geometrical portions of the deposit to be exploited, i.e., the 
parts of the mine that need to be scheduled for extraction, and in turn, for which the equipment must be 
selected. However, finding a good mine design is also a complex problem that involves determining the 
geometry of the mine layout, which is a design problem in 3-D space. Furthermore, mine design must satisfy 
complex geomechanical constraints that ensure the success of the mining method of choice and the safety of 
the operation while assuring the richest parts of the deposit are being extracted to reach a high economic 
value.  

In this paper, we focus on the sublevel open stoping (SLOS) method, where the stope (empty space left after 
mineral extraction) is extracted from drifts located at its bottom and organized in levels located at different 
heights. SLOS is a mining method applied to a relatively steep dip, where the ore body and surrounds are 
constituted by competent rock. In this method, several drives cross the orebody, and ore is produced from 
these drives by drilling and blasting long holes that can be inclined in any direction. The ring or pattern forms 
a plane perpendicular to the drive, and the holes are blasted as a unit. Figure 1 (left) presents a schematic of 
one level in a sublevel open stoping (SLOS) mine.  

SLOS is regarded as a highly efficient and versatile mining method, enhanced by recent developments in 
machinery, blasting and support methods and technologies. 



 

 

Figure 1 – (Left) Sublevel Stoping (Right) Zoom on the base of the stope illustrating the drawbell and 
production drift. (Atlas Copco, 2007) 

Mine planners utilize the block model, a 3-D representation of the deposit as a regular array of blocks to 
encode the spatial distribution of relevant attributes like grades and tonnages and make decisions about 
mining volumes and production planning. Thus, many authors model the shape of stopes by approximating 
them as sets of blocks. For example, in the seminal work, Alford (1995) introduces the floating stope 
method, which abstracts a stope as a rectangular set of 𝑑௫ × 𝑑௬ × 𝑑௭ blocks. Then, he computes the 
economic value and tonnage of the stope as the summation of these attributes over the blocks contained in 
the stope. The method generates an inner and an outer envelope, and the optimal solution, which the user 
must determine, lies between these envelopes. 

The simplicity of the floating stope method makes it easy to implement; therefore, it has become the core 
idea of algorithms available in commercial software. For example, Cawrse (2001) proposes to use it iteratively 
to optimize the design of the whole mine. Unfortunately, the floating stope algorithm and derivates are highly 
dependent on user expertise; thus, they are heuristic in nature (Nikbin et al., 2020).  

The geometrical limitations of the floating stope method have motivated some authors to develop methods 
to find the overall optimal shape of the stope. A variety of studies (Bai, 2013; Nelis et al., 2016; Ovanic & 
Young, 1999) have addressed the problem of optimizing the shape of a stope but consider more general 
geometrical options. These optimization models select the blocks that will constitute the stope in such a way 
that they maximize the economic value but respect geometrical constraints, expressed as mathematical 
formulae that link the selection of individual blocks with the desired geometric properties. 

These previous works focus on generating a single profitable stope that complies with a given set of 
geometrical constraints. However, they do not tackle the problem of computing the best set of stopes, which 
is known as stope boundary optimization. This problem consists of determining an ensemble of valid stopes 
that contain the maximum economic value and comply with constraints related to their relative position and 
the distance between them. Such a problem is regarded as analogous to the ultimate pit problem (O’Sullivan 
& Newman, 2015). 

Another relevant problem is layout design optimization. This problem extends the boundary optimization to 
consider also their organization into levels from which their extraction will happen. Considering that the 
layout design is by nature an optimization problem, many authors have relied on binary or mixed-integer 
programming (MIP) models to address it. However, there are different approaches to model the stopes. Some 



models have decision variables at the block level, i.e., their basis is a subset of the block model, and they 
determine the stopes by selecting the blocks to be extracted. Other authors consider aggregating blocks into 
predetermined sets. For example, some models work with panels that are perpendicular to the direction of 
an imaginary drift. In this case, the minimum volumetric unit in the optimization models is given by a panel, 
and the models determine the stopes as sets of these panels. Finally, other models aggregate the blocks 
further and work at the stope level, optimizing directly over a set of valid stopes.  Some relevant papers 
concerning the layout design optimization problem that work at different levels of aggregation are discussed 
in more detail below. 

Ovanic & Young (1999) present a mixed integer program to address the problem in one-dimension. Their 
model computes an optimal set of stopes, which are formed by consecutive panels. The method can be used 
to generate a stope layout by being applied to multiple panels; however, the panels and their locations are an 
input to the model, i.e., they must be defined in advance. Because of this, the method does not ensure global 
optimality.  

Jalali & Ataee-pour (2004) propose an algorithm that performs several transformations of the economic block 
model (a block model where the economic value of each has been pre-estimated) to reduce it to a 2-D 
representation and then apply dynamic programming on the resulting model to compute the optimal stope 
layout. Unfortunately, the algorithm execution time is significant, and because the reduction to 2-D loses 
some information, the algorithm is better adapted to vein deposits. 

Ataee-Pour (2005) and Topal & Sens (2010) propose algorithms that assume that stopes are rectangular and 
of known dimensions (i.e., formed as arrays of 𝑑௫ × 𝑑௬ × 𝑑௭ blocks). Thus, in a first stage, they compute all 
stopes of given dimensions and positive economic value. The second stage is a greedy algorithm that, in each 
iteration, adds the stope with highest value that is compatible with previously selected stopes (i.e., such that 
it does not overlap). These greedy algorithms exhibit short computation times but cannot ensure optimal 
solutions. This issue is partially addressed by Sandanayake et al.  (2015), with a more sophisticated approach 
in which the algorithm considers several possible initial stopes which induce different sequences for adding 
stopes greedily. Still, the algorithm is a heuristic that cannot ensure optimality  (Erdogan & Yavuz, 2017). 

Grieco & Dimitrakopoulos (2007) extend Ovanic & Young (1999) and present an integer program that 
computes all the stopes for all the panels simultaneously. Their emphasis is on uncertainty; therefore, they 
incorporate additional constraints for controlling the level of risk to be accepted. They apply their method to 
a real case to generate different layouts depending on the risk parameter. 

Nikbin et al. (2019) present an optimization model that works at the block level. The resulting model is 
complex and hard to solve; therefore, the authors develop heuristics which in their case study are within 0.6% 
of the optimal solution. The model determines a set of rectangular stopes but offers little control of the 
resulting geometry. Also, because it constructs the stopes from the blocks, it is difficult to extend their 
approach to incorporate non-linear properties of the resulting stopes, which we discuss later in this section. 

Nikbin et al. (2020) describe a heuristic method based on dynamic programming and a greedy algorithm that 
work at different 𝑧 coordinates. Dynamic programming is used to determine optimal solutions to a one-
dimensional problem, which are then combined using a greedy procedure.  

It is interesting to note that for less aggregated modeling (block and panel levels), models tend to have more 
complex formulations because they must express the shape of the stopes using mathematical constraints. 
Conversely, more aggregated modeling (stope level) allows simpler mathematical formulations because the 
complexity of the feasible stopes’ shapes is “hidden” in the input. However, this implies that “stope-based” 
models require a previous stage for computing the set of valid stopes. Moreover, there is the risk that the size 
of the input increases considerably and may become intractable because the number of stopes can be 
exponential with regard to the number of blocks. In fact, several works generate the set of valid stopes as 



rectangular sets of blocks with a positive economic value. However, because of the large size of the family of 
valid stopes, these works apply some sort of greedy algorithm to compute the solution iteratively or to 
construct several potential solutions that are then compared. Indeed, Hou et al. (2019) and Little et al. (2013) 
acknowledge difficulties in computing good solutions efficiently.  

Despite the numerical issues described above, stope-based models have a significant advantage. Indeed, 
some properties of the stopes, like stability or dilution, can strongly affect the value or even validity of a stope 
(Grieco and Dimitrakopoulos ,2007); however, these attributes are not additive like grades or tonnages, i.e., 
they cannot be computed using linear functions of attributes of the blocks or panels within the stope. 
Because of this, block and panel-based models may have to deal with non-linearity, work only with 
approximated values, or ignore these issues completely. A stope-based model does not suffer from these 
inconveniences because all the relevant attributes can be evaluated before the optimization process begins, 
i.e., the optimization model can use more accurate information. 

Finally, it is worth noting that some authors have gone beyond modeling only the volume to be extracted and 
have incorporated aspects related to production scheduling in the layout design. Little et al. (2013) used a 
stope-level approach combined with an integer linear optimization model that not only determines the set of 
stopes for extraction, but also establishes when each stope should be extracted to maximize the net present 
value (NPV). Their model considers production and backfilling capacities as well as geometrical constraints on 
the stopes. Hou et al. (2019) extended this approach to also consider the development of access ramps.  

In this paper, we rely on a stope-based formulation. Our methodology, as others, first computes the set of all 
valid stopes and then solves an optimization problem to find the best stope layout. However, we incorporate 
the following relevant contributions with regard to the previous models proposed: 

- In our approach, the stopes in the optimal underground layout have positive economic value (as in 
previous works), but their shape is not constrained to be rectangular. Moreover, before admitting a 
stope as valid, we utilize a stability graph (Mawdesley et al., 2001) to filter out stopes that are 
geotechnically unstable. This is an example of using the modeling advantage of stope-based 
modeling that has not been exploited before. 

- The optimization problem is new and more flexible, allowing several degrees of control over the 
geometry of the resulting solution. In this work, we propose a free variation in which production 
drifts can be located “anywhere” (as long as stopes remain compatible) and a constrained variation 
where the drifts must be organized into sublevels. (See Figure 3 in Section 1.1 for more details.) 

- The mathematical model leads to efficient algorithms: 
o For the “constrained” variation of the problem, we prove that it can be solved optimally in 

𝑂(𝑁ଶ), where 𝑁 is the number of stopes. In the larger block model studied in this paper, 
which contains more than 13 million stopes, the proposed algorithm took 0.43 seconds to 
find the optimal solution. 

o For the “free” variation of the problem, we propose an algorithm that can find feasible 
solutions quickly. For example, in the case mentioned above, the heuristic found a solution 
which was within approximately 20% of the optimum in 17 seconds. 

o When using commonly available linear optimization solvers, the computation times 
required to find the optimum of our model scale well. The computation time to find the 
optimum in the 13 million stope case is approximately 45 minutes on a desktop computer. 

Finally, while in this paper we present the problem in the context of sublevel open stoping (SLOS), some of 
the ideas could be applied directly or adapted to other underground methods. For example, our method 
could be applied directly to a sublevel caving mine. Similarly, in this work we use the stope-based model to 
ensure that the stopes are stable, but this could also be used to have a better estimation of costs by linking 
the size of the stopes with equipment productivity or economic value by introducing other aspects like 



dilution and over excavation, which are non-linear. However, the additional attributes of the stopes need to 
be computed efficiently to keep the approach practical. 

1.1 Description of the model 
In the case of SLOS, as well as other mining methods, stopes cannot be arbitrarily located in 3-D space. 
Instead, they follow the development of levels and production drifts that are first used for access and 
extraction of the stopes. For this reason, we impose certain geometrical constraints on the selection of drifts, 
such that the resulting geometries are more realistic and amenable for later design of the mine. In this 
regard, we consider two aspects: first, that the stopes must be organized into drifts, and second, that drift 
locations cannot be arbitrary. 

Organization of stopes into drifts. To model this, we will assume that the drifts follow the 𝑦 direction of the 
block model (arbitrary directions can be addressed by rotating the model); thus, we encode potential location 
of drifts as (𝑥, 𝑧) pairs. The model determines which drifts (i.e., (𝑥, 𝑧) coordinates) need to be developed and 
the set of stopes belonging to that drift that must be extracted. More specifically, we consider that a stope 
potentially belongs to a drift if a drift segment can be constructed to reach it directly or it can be reached by a 
valid sequence of stopes in increasing order of 𝑦. This is depicted in Figure 2, which provides a plan view of a 
sequence of stopes constituting a drift. The squares represent blocks in the block model, with colored blocks 
(orange, green, light blue and yellow) corresponding to four stopes that have been selected for construction. 
In general, a stope can be reached through many paths, i.e., the yellow stope at the eastern location could be 
reached by selecting different orange, green and blue stopes. 

 
Figure 2 - Plan view of a drift with 4 stopes, each with different size. 

Drifts organized into levels. We consider two variations of the model for controlling the geometry of the 
solutions. The first variation (free drift location) permits drifts to be located anywhere if there is some 
minimum distance between them. A second variation (constrained drift location) requires the drifts to be 
organized into levels with a minimum vertical distance between levels. Figure 3 depicts these two approaches 
in a conceptual case of a block model, which is 14 blocks wide and 15 blocks high. On the left, the figure 
depicts a feasible solution for the free drift location case, consisting of five drifts. The black blocks represent 
the drifts themselves and the colored blocks the blocks to be extracted (of the first stope of the drift). On the 
right, a feasible solution to the constrained drift location case is shown. In this case, drifts are grouped into 
levels 𝑧 = 3 and 9. It is worth noting that the figure is conceptual and aims to illustrate how different the 
models can be. Indeed, while the solution on the right is feasible for the free drift model on the left, the 
converse is not true. 



 
Figure 3 - An XZ-view comparing two feasible (not necessarily optimal) solutions. Black blocks represent 

drifts and colored blocks correspond to stopes. On the left, a free drift variation with 5 drifts. On the right, a 
solution of the constrained drift variation with two levels and six drifts. 

We acknowledge that the constrained drift location is perhaps too restrictive; however, we emphasize that 
the resulting levels are an output of the model and not imposed by the user. In fact, it would be easy to 
extend the formulation, for example, to limit the number of levels or to limit the difference in heights 
between 𝑧 coordinates of the drifts to be constructed. 

2 Mathematical formulation and theoretical results 
In this section, we introduce the mathematical notation and optimization model proposed to find the best 
layout of the mine, i.e., for selecting the drifts and stopes to be constructed. We also present theoretical 
results that justify the algorithms proposed for solving the optimization problem. We first address a one-
dimensional version of the problem, corresponding to a single drift. The general case is constructed from it.  

As previously noted, our approach is stope-based, i.e., the model does not work directly with blocks but 
assumes that the stopes have been computed in advance along with their relevant attributes. Moreover, we 
assume that it is possible to determine whether a potential stope is stable and, for any pair of stopes, if they 
are incompatible (for example, if the stopes overlap, they are incompatible). 

2.1 Stope layout optimization (one drift case) 
In the one drift case, we have a set Λ of stopes that belong to a potential drift. For stope ℓ ∈ Λ, let 𝑣(ℓ) be its 
economic value. We assume that the compatibility between two stopes (i.e., if they both can be constructed) 
can be easily checked (for example, stopes that overlap or are too close to each other are not compatible). 
Thus, we denote Γ = { {ℓଵ, ℓଶ} ∈ Λ ∶  ℓଶ is not compatible with ℓଵ}. 

With these definitions, we see that the problem of finding the set of stopes in a drift that have maximum 
value can be formulated as a binary linear program as follows. Let 𝑢ℓ be a binary variable such that 𝑢ℓ = 1 if 
and only if the corresponding stope is extracted. We name the resulting optimization problem as the "one 
drift slope design problem,” or (1 − 𝑆𝐷𝑃) for short. This problem can be formulated as follows. 

(1 − 𝑆𝐷𝑃) 𝑚𝑎𝑥 ෍ 𝑣(ℓ)𝑢ℓ

ℓ∈ஃ

𝑢ℓభ
+ 𝑢ℓమ

≤ 1 ∀{ℓଵ, ℓଶ} ∈ Γ

 𝑢ℓ ∈ {0,1} ∀ℓ ∈ Λ
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From the formulation, it is also clear that the problem is completely determined by the graph 𝐺 = (Λ, Γ) with 
weight function 𝑣 defined on the vertices, and in fact, (1 − 𝑆𝐷𝑃) corresponds to finding an independent set 
of maximum weight 𝐺, which is NP-Hard (Garey & Johnson, 1978).  Fortunately, the hardness of a maximum 
independent set comes from the arbitrary structure of the graph. In fact, we will later show that (1 − 𝑆𝐷𝑃) is 
equivalent to finding the longest path in an auxiliary graph and that it can be solved efficiently. 

2.2 Stope layout optimization (multiple drifts) 
To model this case, we generalize the previous formulation to determine not one, but several drifts each 
containing many stopes. In this formulation, the model chooses which drifts and stopes are to be constructed 
such that the total economic value is maximized, each individual stope is stable, and no two incompatible 
stopes are constructed.  Given the aforementioned and because we assume that the drifts follow the 𝑦 axis, 
we can enumerate the set of possible drifts by the (𝑥, 𝑧) coordinates of its left-upper block. We will denote 
𝑋𝑍 = {(𝑥, 𝑧)} the set of valid locations for the drifts.  

As drifts are indexed by coordinates, we observe that each drift (𝑥, 𝑧) induces an instance of (1 − 𝑆𝐷𝑃) with 
its own stope and incompatibility sets, which we can write as Λ௫௭  and Γ௫௭ , respectively. Notice that Γ௫௭  
represents the incompatibility between stopes within the drift indexed by coordinates (𝑥, 𝑧); therefore, we 
need to extend this to establish incompatibility constraints between drifts of different coordinates. We 
consider two variations: 

- Free drift location. In this case we consider that two drifts are incompatible if they contain stopes 
that are incompatible with each other. Then, a drift with coordinates 𝑚 = (𝑥, 𝑧) is compatible with 
coordinates 𝑚ᇱ = (𝑥ᇱ, 𝑧ᇱ) if and only if all stopes in 𝑚 are compatible with all stopes in 𝑚′. (Recall 
that it is always possible to evaluate if two stopes are compatible.) 

- Constrained drift location. In this case, we consider that two drifts with the same compatibility as 
before (two drifts are compatible if all their stopes are compatible), plus the constraint that drift 
𝑚 = (𝑥, 𝑧) is compatible with any drift 𝑚ᇱ = (𝑥ᇱ, 𝑧ᇱ) only if |𝑧 − 𝑧ᇱ| = 0 or |𝑧 − 𝑧ᇱ| ≥ 𝐷௭, for some 
distance 𝐷௭. In other words, we observe that selected drifts must have all their stopes compatible 
and either belong to the same level or to levels that are far enough from each other. 

In any of the cases, we denote as Γ෠ = ൛{(𝑥, 𝑧), (𝑥, 𝑧ᇱ)}ൟ the incompatibility set for drifts and introduce the 
following optimization binary variables 𝑤௫௭ = 1 if and only if a drift (𝑥, 𝑧) is constructed. 

As mentioned before, for each value of (𝑥, 𝑧) ∈ 𝑋𝑍 there is a corresponding instance of (1 − 𝑆𝐷𝑃), thus, if 
we denote the corresponding variables in the formulation as 𝑢ℓ

௫௭, this allows us to introduce the "Multi-drift 
stope design problem" or (𝑛 − 𝑆𝐷𝑃) for short. The model can be written as 

(𝑛 − 𝑆𝐷𝑃) 𝑚𝑎𝑥 ෍ ෍ 𝑣(𝑆ℓ)𝑢ℓ
௫௭

ℓ∈ஃ౮౰௫௬∈௑௓

(1)

𝑢ℓభ

௫௭ + 𝑢ℓమ

௫௭ ≤ 1 ∀(𝑥, 𝑧) ∈ 𝐶, ∀{ℓଵ, ℓଶ} ∈ Γ௫௭     (2)

𝑤௫௭ + 𝑤௫ᇱ௭ᇱ ≤ 1 ∀{(𝑥, 𝑧), (𝑥ᇱ, 𝑧ᇱ)} ∈ Γ෠ (3)

𝑢ℓ
௫௭ ≤ 𝑤௫௭ ∀(𝑥, 𝑧) ∈ 𝑋𝑍, ∀ℓ ∈ Λ௫௭ (4)

𝑢ℓ
௫௭ , 𝑤௫௭ ∈ {0,1} ∀(𝑥, 𝑧) ∈ 𝑋𝑍, ∀ℓ ∈ Λ௫௭

 

Equation (1) is the objective function and corresponds to the total economic value. Equation (2) prevents 
two incompatible stopes within the same drift from being selected. Equation (3) establishes the 
incompatibility constraint between drifts. Finally, Equation (4) indicates that only stopes belonging to 
selected drifts can be constructed. 



We observe (𝑛 − 𝑆𝐷𝑃) can be very large and that it is a specific case of the weighted maximum independent 
set; thus, it may be difficult to solve up to optimality. Because of this, we discuss some algorithmic 
approaches in the next section.  

2.3 Solution algorithms 
Because (𝑛 − 𝑆𝐷𝑃) is a binary linear problem, it is theoretically possible to solve it using the Branch and 
Bound (BnB) algorithm (Land & Doig, 1960). This algorithm works by solving the integer relaxation of the 
problem to generate feasible solutions and upper bounds that can establish the quality of the feasible 
solutions found so far. BnB is the default method for solving mixed integer or binary integer problems 
because it is available in most academic and commercial optimization software. Another important feature of 
BnB is that it permits an optimality gap 𝜀 ≥ 0 to be set, such that the algorithm ends either with a proof of 
unfeasibility or a feasible solution that cannot be improved beyond 100 ⋅ 𝜀%. Therefore, setting 𝜀 = 0 
ensures that the algorithm reports an optimal solution if it exists. 

Unfortunately, as mixed integer linear problems can be NP-Hard in general, BnB is potentially inefficient or 
impractical in general. Hence, it is convenient to consider some algorithms that are specifically designed for 
exploiting the structure of the problem. In section 2.3.1 we address the constrained drift location case and 
show that it can be solved efficiently by reducing it to the shortest-path problem. In section 2.3.2, we address 
the free drift location for which we propose a simple heuristic algorithm. 

2.3.1 Solving the constrained drift location case by means of a shortest-path algorithm 

In the case of (𝑛 − 𝑆𝐷𝑃) with a constrained drift location ((1 − 𝑆𝐷𝑃) is a particular case of it), we show that 
the problem can be reduced to a longest-path problem in an auxiliary graph that contains no cycles. 
Therefore, it can be solved efficiently because this problem in turn can be reduced to a shortest-path problem 
(Sedgewick & Wayne, 2011). 

Let us first address the one-dimensional case and assume that 𝑦 coordinates are ordered from left to right. 
Therefore, any pair of compatible stopes are such that one is located at the left of the other. This is illustrated 
in Figure 4, where an arbitrary stope ℓ is drawn at the center, and compatible stopes are represented in 
segmented lines (these stopes are compatible with stope ℓ, not with each other). 

 
Figure 4 - A conceptual example of a stope (solid line, at the center) and all stopes that are compatible with 
it (in segmented lines). 

We construct the following auxiliary graph 𝐺 = (𝑉, 𝐴) 

- The set of vertices 𝑉 = {𝑠} ∪ Λ, where 𝑠 is an artificial vertex named the root. 
- The set of arcs is 𝐴 = {(𝑠, ℓ) ∶ ℓ ∈ Λ} ∪ {ℓଵ, ℓଶ ∈ Λ: 𝑦(ℓଵ) < 𝑦(ℓଶ) ∧ {ℓଵ, ℓଶ} ∉ Γ}, i.e., the root is 

connected to all vertices (stopes), and two stopes are connected if one is at the left of the other and 
they are compatible. 

- If arc (𝑢, 𝑣) ∈ 𝐴 connects to vertices, then the length of the arc is 𝛿(𝑢, 𝑣) = 𝑣(𝑆ℓ), the value of the 
destination stope. (Recall that by construction all economic values are positive.) 

It follows that an independent set of stopes (i.e., a set of stopes that are all compatible with each other) 
corresponds to a path starting in the root 𝑠. Moreover, the economic value of the set of stopes is exactly the 



length of the path. Thus, finding the longest path that starts in 𝑠 is equivalent to finding the set of 
independent stopes of maximum economic value.  

To conclude the proof, we observe that because Graph 𝐺 is acyclic, the longest path can in turn be calculated 
as a shortest path by replacing the distances with  𝛿ᇱ(𝑢, 𝑣) = Δ − 𝛿(𝑢, 𝑣) where Δ is any sufficiently large 
value such that all 𝛿ᇱ values are positive (for example Δ = 1 + max

(୳,୴)
𝛿(𝑢, 𝑣)). In this way, the new distances 

are all positive and the Dijkstra algorithm can be used to compute the shortest path (Dijkstra, 1959) in 
𝑂(|Λ|ଶ) operations. 

For the case of (𝑛 − 𝑆𝐷𝑃), we observe that the previous reduction to a longest path problem works because 
to verify that the set of selected stopes is valid, it suffices to check the compatibility in a sequential way, 
where stopes are organized as a unique path from left to right. This idea in fact can be generalized to (𝑛 −

𝑆𝐷𝑃) with constrained drifts. In this case, drifts can be ordered in ascending order of 𝑥 coordinates, and 
then, since all drifts in a level are compatible with all drifts in the next one, they can also be ordered by 𝑧. 
Therefore, (𝑛 − 𝑆𝐷𝑃) can be solved efficiently in the case of the constrained drift formulation. A detailed 
proof of this can be found in the appendix. 

2.3.2 Heuristic for the free drift case 

The previous reduction does not apply in the free drift location case because if drifts can be positioned at 
arbitrary coordinates, it is not possible to sort them such that the independence of the selected stopes can be 
verified by checking compatibility of subsequent stopes in a path. As a result, computing a longest path 
produces an independent set of stopes, i.e., a feasible design, but not necessarily optimal. 

Considering the above, we propose using an adapted version of the Bellman-Ford’s algorithm (Bellman, 1958; 
Ford, 1956). The complexity of this algorithm when working on a directed graph 𝐺 = (𝑉, 𝐴) is 𝑂(|𝑉||𝐴|). 
Considering that the complexity of Dijkstra’s is 𝑂(|𝑉|ଶ), and there are more arcs than vertices, the algorithm 
that we propose is slower for large graphs. However, Bellman-Ford’s algorithm can work with negative 
distances in graphs that contain cycles, which is necessary in our case. 

Our adapted version of the algorithm is straightforward. We illustrate it in Figure 5. In fact, except for the line 
in red, it corresponds exactly to the original algorithm. This red line forces that when updating the distances 
at the evaluation of arc (𝑢, 𝑣), only compatible stopes (represented by 𝑣) are considered. 
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Let 𝑄 = {𝑠} 
For each vertex 𝑣 ≠ 𝑠 ∈ 𝑉: 
        𝑑(𝑣): = ∞ 
𝑑(𝑠) ≔ 0 
While 𝑄 is not empty, do: 
    𝑢 ≔ 𝑃𝑢𝑙𝑙(𝑄) 
    For each edge {𝑢, 𝑣} ∈ 𝐸 do: 
        If 𝑑(𝑢) + 𝑤(𝑢, 𝑣) < 𝑑(𝑣) then 
            If not 𝐼𝑠𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝑢), 𝑣) then go to 7. 
            𝑑(𝑣) ≔ 𝑑(𝑢) + 𝑤(𝑢, 𝑣) 
            If 𝑣 ∉ 𝑄 then 𝑃𝑢𝑠ℎ(𝑣, 𝑄) 

 Figure 5 - Adapted Bellman-Ford algorithm 

3 Numerical Experiences 
In this section, we present numerical results obtained when applying our model and solution techniques in 
two copper mines located in Northern Chile. We first describe the instances in terms of economic 
parameters, geotechnical modeling, and block models, and then present the results and their analyses. 



3.1 Description of the instances 
The parameters used to evaluate the economic values of individual blocks are summarized in Table 1 (copper 
price, metallurgic recovery, mining cost, etc.). These values, plus the construction costs for the drifts are used 
to compute the economic value of the stopes. 

It is worth noting that while Mine A is an actual mine, the only attributes that were used were the block 
locations and copper grades; thus, the density was assumed to be constant and the geomechanical model 
was constructed ad-hoc for the study. This is not the case for Mine B, for which all data was available to 
perform the studies. 

Table 1: Parameters for economic evaluation of blocks 

Parameter (Symbol) Unit Mine A Mine B 
Price (𝑃) USD/lb 3.5 
Selling Cost (𝐶௦) USD/lb 0.25 0.5 
Mine Cost (𝐶௠) USD/ton 20 25 
Processing cost (𝐶௣) USD/ton 12 12 
Metallurgical Recovery (𝑅) % 80 85 
Conversion Factor (𝐹) lb/ton 2,204.62 
Development cost (𝐷) USD/m 4,000 3,700 

 

If 𝑔௜  is the copper grade of the 𝑖-th block and 𝑡௜  is its tonnage, then its economic value is 

𝑉௜ = (𝑃 − 𝐶௦) ⋅ 𝑔௜ ⋅ 𝑡௜ ⋅ 𝑅 ⋅ 𝐹 − (𝐶௠ + 𝐶௣) ⋅ 𝑡௜ 

It is important to observe that the mining cost 𝐶௠ does not include the development required for the drift 
segment located under the stope. Indeed, the economic value of a stope will be computed as the addition of 
the economic blocks contained in it minus the development cost of that drift segment. 

To test the approach and stress the model, we utilized the block models of the mines to generate additional 
instances by splitting the blocks into 8 smaller ones. For these blocks, we considered the same stability values 
and assigned value and tonnage equal to one eighth of the original blocks. 

The resulting instances are reported in Table 2, which contains the following for each instance: an identifier 
(ID), the size of individual blocks, the total number of blocks in each direction (NX, NY, NZ), the total number 
of blocks in the block model, the desired stope dimensions, and the minimum distance required between 
stopes in the vertical dimension (crown pillar) and between stopes in the same drift (min. inter-drift distance), 
and the minimum size of pillars for stopes in the same drift (min. pillar length). 

Table 2 Summary of block model instances 

ID 
Block 
Sizes 
(m) 

NX NY NZ # Blocks 
Stope 
width 
(m) 

Stope 
height 

(m) 

Stope 
length 
range 
(m) 

Drawbell 
height 

(m) 

Crown 
pillar 

height 
(m) 

Min. 
inter-
drift 

distance 
(m) 

Min. 
pillar 

length 
(m) 

A0 10x10x10 36 73 32 84,096  30 30 30-50 20 10 20 20 

A1 5x5x5 72 146 64    672,768  30 30 30-50 20 10 20 20 

B0 10x10x16 139 172 17 406,436  30 48 40-80 32 16 10 10 

B1 5x5x8 278 344 34 3,251,488  35 48 40-80 32 16 10 10 

 



3.2 Implementation 
All code was implemented in Python (v3.6) and the following publicly available libraries: pandas v1.1.4 
(McKinney, 2010) for storing and managing the block model data, numpy v1.19.0 (Hoyer, et al., 2020) for 
efficient computation on the data, networkx v2.5 (Swart, Hagberg, Schult, & Pieter, 2008)  for the 
implementation of the Bellman-Ford algorithm, its modified version, and the implementation of the 
maximum weighted clique algorithm, mayavi v4.7.2 (Ramachandran & Varoquaux, 2011) for visualization, 
pathos v0.2.7 (McKerns, Strand, Sullivan, Fang, & Aivazis, 2011) for parallelizing the generation of stopes, and 
pulp v2.3.1 (Mitchell, O'Sullivan, & Dunning, 2011) to model (𝑛 − 𝑆𝐷𝑃) and as interface to the optimization 
solver. We utilized CBC (Forrest, et al., 2015) for finding optimal solutions of (𝑛 − 𝑆𝐷𝑃). 

3.3 Generation of the valid stopes 
The first step of the methodology is common to both variations of the problem and corresponds to 
enumerating all possible stopes, computing their economic value, and discarding non-profitable and non-
stable stopes. 

To generate the stopes, we constructed them as sets of blocks; however, we incorporated the drawbell and 
the segment of drift located below the stope. This allows for a better approximation of the final shape as well 
as the economic value. In this way, costs can be approximated more accurately because, for example, drilling 
and blasting costs of drawbells are relatively higher. Specifically, we utilized the concept of pattern, which 
encodes the width and height of the stope as well as the bell and the drift segment. As in the case of panels in 
other publications, a pattern is repeated several times to generate stopes of different lengths. The concept 
and the process are illustrated in Figure 6, where (a) represents a pattern, (b) its approximation using blocks, 
and (c) the generation of a stope by repeating the pattern. 

In the applications presented in this work, we used only one pattern per instance; however, several could be 
utilized in general to produce stopes of different sizes.   

        
                                 (a)                                             (b)                                          (c)                                                    

Figure 6 - (a) Actual stope and drift profiles. (b) Block pattern to approximate the stope. (c) Isometric view 
of a stope. 

The successful application of SLOS requires that the extracted cavity be stable; therefore, many studies have 
focused on supporting the design process of stopes. Mathews et al. (1981) developed the first stability graph, 
which was based on the study of 26 case stories. Other authors, for example Potvin (1988), Sourineni (2010), 
then expanded the database and updated the model. The database reported in Mawdesley et al. (2001) 
contains more than 400 cases of stopes in North America, Australia, and England. 

It follows that a stability graph determines a function 𝜔(⋅) which can be used to determine the stability of 
each stope individually. Using this, we can filter out all stopes that are not stable before any optimization 
process begins. This ensures that the final solution does not propose unstable stopes but also has the 
potential to reduce the total number of stopes in the optimization process which shortens its running time. 



Table 3 reports the results obtained in the four block models in terms of the total number of potential stopes 
(i.e., that fit within the block model based on their dimensions) and valid stopes (i.e., that are both stable and 
have positive economic value). The column “# Valid Drifts” contains those drifts with at least one valid stope. 
Similarly, the column “# Valid Levels” corresponds to levels that contain at least one valid drift.  

Table 3 Summary of results for stope generation 

ID # Potential 
Stopes 

# Valid Stopes # Valid Drifts # Valid levels 

A0 53,466 5,714 241 27 

A1 715,260 74,635 955 52 

B0 949,395 28,620 491 12 

B1 13,522,464 416,408 2,029 24 

 

3.4 Stope optimization results (constrained drift location case) 
In this case, any shortest-path algorithm is guaranteed to find the optimal solution for the problem; hence, 
we used the Bellman-Ford implementation available in the networkx package without modification. Table 4 
reports, for each instance, the number of stopes, drifts and levels selected in the optimal solutions, as well as 
the total stope value and the execution time, both for the algorithm and the exact solution.  

Table 4 Summary of results for the constrained drift location case 

ID # Stopes # Drifts # Levels 
Total Stope 

Value (MMUSD) 
Execution Time 

(s) 

A0 14 8 4 74.92 0.01 

A1 14 8 4 73.25 0.06 

B0 87 21 2 469.61 0.06 

B1 85 21 2 468.97 0.43 

 

As the results show, even for the largest instance, the algorithm can find the optimal solution in less than half 
a second.  The results also show that the solutions are consistent in each block model, i.e., the total number 
of stopes, drifts and levels is the same, for A0 and A1, and for B0 and B1, respectively. The economic value of 
the optimal solution with the highest fidelity A1 is slightly smaller than that for A0 (the same applies when 
comparing B1 and B0). This is most likely due to a better approximation of the drift and bell shapes. 

3.5 Stope optimization results (free drift location case) 
In this case, it is not possible to reduce the problem to a longest-path instance; therefore, we used the 
adapted version of the Bellman-Ford algorithm presented in Figure 5 and compared it with the results from 
the CBC solver. The optimality gap for CBC was set to zero, i.e., the solutions found by the BnB 
implementation in CBC are optimal. 

Table 5 reports the solutions obtained by the two algorithms. It indicates the instance ID, the number of 
stopes, drifts and levels, the economic value of the solutions, and the execution time. Because the binary 
linear approximations are optimal, the table also reports the gap and time improvement with regard to the 
optimal solution of the binary linear program. 

Table 5 - Summary of results for the free drift location case 



ID 

Adapted Bellman-Ford Algorithm Binary Linear Program 

GAP 
(%) 

Time 
Gained 
(Factor) 

# 
Stopes 

# 
Drifts 

# 
Levels  

Total 
Stope 
Value 

(MMUSD) 

Exec. 
Time 

(s) 

# 
Stopes 

# 
Drifts 

# 
Levels 

Total 
Stope 
Value 

(MMUSD) 

Exec. 
Time (s) 

A0 13 8 8 72.12 0.27  16 9 9 82.80 32  12.9%  120  

A1 15 9 6 74.68 3.63  16 9 9 79.74 1,917  6.3%  528  

B0 87 21 6 517.99 1.20  99 25 9 654.04 28  20.8%  24  

B1 94 23 9 560.32 17.00  108 28 10 676.54 2,369  17.2%  139  

 

Overall, we see that the adapted algorithm is very fast, with the longest execution time being of 17 seconds, 
reaching a speedup from 24X to 528X, if compared to the linear optimization solver. However, the optimality 
gap can also be relatively large: up to 20.8% in the worst case, which suggests using the heuristic to provide 
an initial solution for BnB. 

It is worth noting that the solutions reported in Table 5 are comparable in value with those of the constrained 
drift case; however, the optimal solutions show that the free drift solutions can contribute significantly to the 
value of the layout, with an increase between 13% and 25%, depending on the instance. However, these 
benefits require that the selected stopes be distributed over more levels. For example, in the A0 and A1 
cases, the optimal solutions for the constrained drift location case distribute stopes in only 2 levels, while they 
require 9 in the free drift location variant. For B0 and B1, the increase in the number of levels is even more, 
from only 2 levels up to 10. 

3.6 Comparison of layouts 
In this section, we present some isometric views of the solutions found in the different cases. 

Figure 7 presents a comparison between the results obtained in the constrained and free drift location model 
variations for the A0 and A1 models. Figure 8 presents the analogous information for models B0 and B1.  As 
shown in Tables Table 4 and Table 5,  the free location variant captures more value by generating more 
stopes; however, this is at the expense of a more irregular location of the drifts, i.e., more complexity in the 
design and subsequently in mine operation.  Surprisingly, we observe that the designs proposed by both 
variations of the problem look relatively similar; however, as expected, the constrained drift location 
distributes the stopes into few levels, making for a simpler design. For example, in the case of A0, A1, the 
extra value comes from adding two more levels, which contain one stope each; thus, most likely these stopes 
are not profitable if all development costs are considered. In the case of B0 and B1, the model manages to 
retrieve additional value by changing the location of levels across the y coordinate, extending from only 2 
levels (with a total of 85-87 stopes) to 9-10 levels (with 99-108 stopes). The resulting layout may be harder to 
design; however, the results suggest that both variations could be combined, for example, by splitting the 
block model in an XY-plane and allowing a different definition of levels in each section to adapt. 
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Figure 7 Isometric views of the designs generated by the algorithm for instances A0 and A1 
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Figure 8 Isometric views of the design generated by the algorithm for instances B0, B1 and B2 

 

Figure 9 presents side by side the designs obtained by the adapted algorithm and the optimal solutions in the 
free drift case. Indeed, we observe that the adapted algorithm generates solutions that are very similar. 
Overall, we observe that the proposed layouts are not too different; however, the optimal solution obtained 
by solving the monolithic model finds a layout with a higher density of stopes, increasing from 87 to 99 stopes 
in the B0 case and 94 to 108 in B1. This is due to the greedy nature of the adapted algorithm. 
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Figure 9 Comparison of designs obtained by the algorithm and exact solution (isometric views) 

3.7 Sensibility Analysis 
In this section we take advantage of the short computation times to analyze the robustness of the solutions 
obtained. For this, we consider random perturbations of the economic values of the stopes and analyze how 
the optimal solution changes for the 2 larger block models, i.e., A1 and B1.  

To construct the scenarios for the sensibility analysis, we perturbed the economic values of the blocks. For 
this, we considered one independent random variable 𝛼 ~ 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(−1, 0.0,1) per block. Thus, if the 
economic value of the block was 𝑣௕, its scenario in scenario 𝑘 became 𝑣௕௞ = 𝑣௕ ± 20% ⋅ 𝛼 ⋅ 𝑣௕ . We 
generated scenarios 𝑘 = 1, 2, … , 𝐾 = 100 with this method. 

Table 6 presents the results obtained for the constrained drift location case. Similar results are obtained using 
the free drift location variant.  For each case (A1 and B1), the table presents how the economic value and 
tonnage of optimal solutions varied. Four values are used for comparison: the base case (obtained using the 



original economic values), minimum, maximum, and average over all the scenarios. As can be seen from the 
results, the difference between the base case and the average of the scenarios is small (less than 0.4% in the 
worst case). Moreover, the total variability is very small. Indeed, the coefficient of variability is less than 0.3%. 
This suggests that the solution obtained for the base case is robust regarding the perturbation considered. 

Table 6 - Summary of results of sensibility analysis 

  Scenarios Statistics 

  Base 
Case 

Min Max Avg Base vs 
Avg. 

Stan. 
Dev. 

Coef. 
Var. 

  
[1]   [2] 

|[1] − [2]|

[1]
 [4] 

[4]

[2]
 

A1 
 Value (KUSD) 67,338 67,006  67,874  67,350  0.02%     163  0.24% 
Tonnage (Kt)        2,835     2,835     2,835     2,835  0.00%          -   0 

B1 
 Value (KUSD)   413,089  410,094  413,992  412,883  0.05%   283  0.07% 
Tonnage (Kt) 38,739 37,850   39,186   38,594  0.38% 1  0.00% 

 

To analyze the spatial variability of the solutions, we performed a similarity analysis using the Jaccard 
similarity index (Jaccard, 1912). Given two discrete sets 𝐴 and 𝐵, the index is calculated as 𝐽𝐴𝐶𝐶(𝐴, 𝐵) =

 
|஺∩஻|

|஺∪஻|
. The maximum value of the index occurs when 𝐴 = 𝐵, in which case 𝐽𝐴𝐶𝐶(𝐴, 𝐵) = 1. Conversely, if 𝐴 ∩

𝐵 =  ∅, then 𝐽𝐴𝐶𝐶(𝐴, 𝐵) = 0, which is the minimum possible value of the index.  

We applied the Jaccard index considering the optimal layouts as discrete sets of blocks. In each scenario, a 
block is marked with a 1 if it is part of the selected layout, and 0 otherwise. Computations are done only over 
the sets of blocks that were selected by at least one layout. 

Figure 10 and Figure 11 present the results for A1 and B1, respectively. The left sides of the figures display the 
histograms over the 100 scenarios and the right sides present the dispersion of these results. In both cases, 
we observe that the set of blocks selected for extraction is stable because in most scenarios (95% of scenarios 
of A1 and 100% of scenarios of B1) the Jaccard index indicates that a fraction of 0.95 of the blocks of A1 
selected for extraction remained selected. In fact, in the few cases of A1 (5/100) where the index was below 
0.95, it remained above 0.65. 

 

Figure 10: Jaccard index distribution and dispersion. Left = Case A1. Right = Case B1. 



 

Figure 11: Jaccard index distribution and dispersion for B1. 

4 Conclusions 
This paper addresses the problem of determining the best underground layout in a sublevel stoping mine 
considering the location of production drifts and stopes such that the overall economic value is maximized. 
For this, similarly to previous studies, we follow a two-step methodology in that we (i) generate valid stopes, 
and (ii) search for the optimal set of selected stopes (maximum total economic value). However, we make 
several contributions in both stages. 

In the first stage, where a set of valid stopes is generated and evaluated, we consider the drawbells and 
production drifts as part of the geometry of the stope, thus we can more accurately estimate the costs and 
income. Moreover, we observe that during the process of generating the stopes, it is possible to evaluate 
other attributes, which permits stope stability to be analyzed. With this information, we can remove stopes 
that are geomechanically unstable in the first stage, so they are not included in the second stage. This ensures 
that the stopes selected in the optimal layout are stable and reduces the size of the optimization process of 
the second stage.   

In the second stage of the methodology, the approach followed by others has been to run a heuristic method 
(that does not ensure optimality) or to solve an optimization problem (which several authors acknowledge is 
difficult to solve). We follow the second approach and propose a binary optimization model. The model has 
several advantages over other approaches: 

- It is very flexible. In the paper we study two variations implementing different degrees of freedom 
for the location of the drifts: The free drift location, where production drifts can be located in any 
position (provided that they are compatible), and the constrained drift location, where drifts must be 
grouped into sublevels that are selected by the model. 

- It can be solved quickly. Contrary to other approaches that report difficulty finding optimal solutions 
in reasonable time, the computational times required in our approach are practical even when using 
free academic solvers. 

- It has good theoretical properties. In the case of the constrained drift location, we show that the 
problem can be reduced to the computation of a shortest-path problem in an auxiliary graph 
constructed ad-hoc. For the free drift location, we propose a fast heuristic that can find relatively 
good solutions in short time frames. 



We apply the methodology to two mines, for each of which two block models were available (the difference 
being the size of the blocks), giving a total of four instances ranging from about 84,000 blocks to more than 
3.2 million blocks.  

In the first stage of the methodology, the set of valid stopes is generated. A first relevant result here is that 
eliminating stopes with negative value or instability reduces the number of potential stopes between 90% and 
97%. This is significant because it speeds up the optimization process in the second stage. 

In the second stage of the methodology, we run our mathematical model to show that it generates practical 
geometries in a relatively short time. Indeed, computational times using free academic solvers to find optimal 
solutions are below 45 minutes in the larger instances. When comparing the two variations of the model, as 
expected, the layout proposed by the free drift location variation of the model generates higher values, but 
the geometry is more complex if compared to the layout obtained when applying the constrained drift 
location. This suggests, for example, that seeking some combination of the variations, using first the free drift 
location to have a better understanding of the best location of stopes in 3-D space and then potentially 
dividing the domain into zones in which the constrained variation could be applied . Finally, in the case of the 
constrained drift locations, it is possible to apply a shortest-path algorithm which finds the optimal solution in 
less than one second. 

To analyze the robustness of the results, we performed a sensibility analysis of the optimal layouts, We 
considered perturbations of the economic values of the stopes and analyzed the variability of the value, 
tonnage and geometry of the stopes obtained by our model. The results show that the variation in value and 
tonnage of the optimal solutions is below 1%. Moreover, the blocks selected for extraction remain mostly the 
same, as in most of the scenarios the number of blocks that changed their status was below 5%.  

Future work will include applying the model to more mines and evaluating variations of the model. The 
sensibility analysis also suggests that it would be interesting to develop a stochastic version of the model in 
terms of market or geological uncertainty and apply strategies to solve the corresponding model. 
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Appendix A – Demonstration of theoretical results 
A.1 Reduction of (1 − 𝑆𝐷𝑃) to the shortest-path problem 
For this, let us define 𝑦ି(ℓ), 𝑦ା(ℓ) as the 𝑦 coordinate of the first (minimum) and last (maximum) slice that 
belong to the stope (recall that the drifts follow the 𝑦 direction). We see that stope ℓଶ ∈ Λ can be 
constructed after a stope ℓଵ ∈ Λ if 𝑦ା(ℓଵ) ≤ 𝑦ି(ℓଵ), and {ℓଵ, ℓଶ} ∉ Γ. 

Now, consider the set of nodes Λᇱ = {𝑠, 𝑡} ∪ Λ where 𝑠, 𝑡 are two auxiliary nodes, and the set of arcs Γᇱ =

Γଵ ∪ Γଶ ∪ Γଷ, where: 

- Γଵ = {(𝑠, ℓ): ℓ ∈ Λ}, i.e., vertex 𝑠 is connected to all stopes, 
- Γଶ = {(ℓଵ, ℓଶ) ∈ Λ × Λ ∶  𝑦ା(ℓଵ) ≤ 𝑦ି(ℓଶ) ∧ {ℓଵ, ℓଶ} ∉ Γ}, which connects compatible stopes, and 
- Γଷ = {(ℓ, 𝑡): ℓ ∈ Λ}, that is, all stopes are connected to 𝑡. 

This defines an acyclic directed graph 𝐺′ = (Λ′, Γ′). We observe that arcs in 𝐺ᇱ either end in a slope ℓ or in the 
auxiliary vertex 𝑡; therefore, we can define the weight function on the arcs as  

𝑣′(𝑎, 𝑏) = ቄ
𝑣(𝑏) if 𝑏 = ℓ for some ℓ ∈ Λ

1 if 𝑏 = 𝑡
 

Finally, we observe that any independent set 𝑋 ⊂ Λ in 𝐺 with weight 𝑉 = ∑ 𝑣(ℓ)ℓ∈௑  induces a path in 𝐺′ 
which starts in 𝑠, goes through all stopes in 𝑋 and ends in 𝑡. This path has 𝑉 + 1 arcs and has a length 𝐿 =

1 + ∑ 𝑣(ℓ)ℓ∈௑ + 1. It follows that finding the longest path in 𝐺′  is equivalent to finding an independent set in 
𝐺. However, as 𝐺′ is acyclic, this can be solved using shortest-path algorithms, which can be done in 
polynomial time (Sedgewick & Wayne, 2011). 

The construction is illustrated in Figure 12(a), (b) and (c). In (a) a small conceptual case is presented consisting 
of 5 stopes, where stopes 3 and 4 are incompatible because they overlap. Stopes 3 and 5 are also 
incompatible because they are too close, and stope 2 is incompatible (due to overlapping) with stopes 1, 3 
and 4. These incompatibilities are summarized in (b) which presents the set of stopes Λ = {1,2,3,4,5} and the 
set of incompatibility Γ = {{1,2}, {2,3}, {2,4}, {3,4}, {3,5}}. Finally, (c) shows the auxiliary construction: the 
vertices Λᇱ = {𝑠, 1,2,3,4,5, 𝑡} and arcs Γᇱ = Γଵ ∪ Γଶ ∪ Γଷ where Γଵ = {(𝑠, ℓ) ∶ ℓ ∈ Λ} is in red, Γଶ =

{(1,3), (1,4), (1,5), (2,5), (4,5)} is in purple and Γଷ = {(ℓ, 𝑡): ℓ ∈ Λ} in shown in green.  

In the example, we see that if each stope has a value 𝑣(ℓ) = 1 then the set of stopes to be constructed 
(according to (b)) is the set 𝐼 = {1,2,4}, which is an independent set in 𝐺 = (Λ, Γ). Set 𝐼 corresponds, in fact, 
to the longest path in the directed 𝐺′ = (Λ′, Γ′) starting at 𝑠, which is 𝜋 = {𝑠, 1,2,4, 𝑡}. 

 

 

 
 

 

 



 
 

Figure 12 - (a) A conceptual set of stopes in a drift. (b) Incompatibility graph for stope construction (edges in 
blue represent the elements of 𝛤). (c) Associated compatibility graph for stope construction. 

Notice that, in fact, adding vertex 𝑡 is not necessary for the construction; however, it is convenient to do so 
because it simplifies the extension to the general case. More importantly, we observe that the reduction of 
(1 − 𝑆𝐷𝑃) to a shortest path works because of the following transitivity condition: if ℓଵ is compatible with ℓଶ 
and ℓଶ is compatible with ℓଷ then ℓଵ is compatible with ℓଷ.  

A.2 Reduction of (𝑛 − 𝑆𝐷𝑃) to the shortest-path problem (constrained drift 
case) 
In this section, we address the general case by extending the construction of the one-dimensional case, i.e., 
we enumerate the drifts and establish a compatibility graph such that an independent set of drifts 
corresponds to a path in the graph. 

Let 𝑚 = 1, 2, … , |𝑋𝑍| be the enumeration of the drifts in growing order 𝑧 coordinates and then in ascending 
order of 𝑥 coordinate so if 𝑚 corresponds to (𝑥, 𝑦) and 𝑚′ to (𝑥ᇱ, 𝑦ᇱ) are such that 𝑚 < 𝑚′, then either 𝑧 =

𝑧ᇱ, 𝑥 < 𝑥ᇱ or 𝑧 < 𝑧′. Given a drift with index 𝑚, we denote 𝑥(𝑚), 𝑧(𝑚) its coordinates. 

As each 𝑚 defines an instance (1 − 𝑆𝐷𝑃) with a set of stopes Λ௠  and incompatibility edges Γ௠, we denote as 
𝐺௠ = (Λᇱ

௠, Γ௠
ᇱ ) the auxiliary directed graph constructed as in the previous section, and 𝑣′௠  the 

corresponding weight function, defined over the arcs of 𝐺௠. We then use the graphs 𝐺௠  to construct a 
directed graph 𝐺ᇱᇱ = (𝑉ᇱᇱ, Γᇱᇱ), as follows. The set of vertices is 𝑉ᇱᇱ = {𝑠} ∪ ⋃ Λ௠

ᇱ
௠ . The set of arcs is Γᇱᇱ =

{(𝑠, 𝑠௠)}௠ ∪ ⋃ Γ௠
ᇱᇱ

௠ ∪ ൛൫𝑡௠భ
, 𝑠௠మ

൯: 𝑚ଵ < 𝑚ଶ ∧ {𝑚ଵ , 𝑚ଶ} ∉ Γ෠ൟ. The weight function is 𝑣ᇱᇱ(𝑎, 𝑏) =

൜
1 𝑎 = 𝑠 𝑜𝑟 𝑏 = 𝑡

𝑣௠
ᇱ (𝑎, 𝑏) 𝑎 ≠ 𝑠, 𝑡

. 

A small example of the construction is depicted in Figure 13, which shows a conceptual case consisting of four 
drifts, A, B, C and D, with B being incompatible with A and B. On the right, the corresponding graph structure 
shows how the graphs for individual drifts are connected. The internal structure of the drifts is omitted to 
simplify the figure, but it corresponds to the construction for the one-dimensional case. 

 



Figure 13 – Left: An example consisting of four drifts (A, B, C, D) where B is incompatible with A and C. 
Right: graph for computing the set of stopes with maximum value. (Internal graph structure for each drift is 

omitted for simplicity.) 

We observe that in the constrained drift location case, given drifts 𝑚ଵ < 𝑚ଶ < 𝑚ଷ such that 
(𝑚ଵ, 𝑚ଶ), (𝑚ଶ, 𝑚ଷ) ∈ Γ′′ (that is 𝑚ଵ is compatible with 𝑚ଶ and 𝑚ଶ is compatible with 𝑚ଷ). Then, either 

- 𝑧(𝑚ଵ) = 𝑧(𝑚ଷ) are at the same level, thus, drift 𝑚ଶ is in between 𝑚ଵ and 𝑚ଶ, but all stopes in 𝑚ଵ 
are compatible with all stopes in 𝑚ଶ (they are far enough), and all stopes in 𝑚ଶ are compatible with 
all stopes in 𝑚ଷ (they are far enough). Then all stopes in 𝑚ଵ are far enough from all stopes in 𝑚ଷ, or 

- 𝑧(𝑚ଵ) > 𝑧(𝑚ଷ), in which case 𝑧(𝑚ଵ) − 𝑧(𝑚ଷ) > 𝐷௭ . 

In both cases we have that 𝑚ଵ is compatible with 𝑚ଷ, i.e., (𝑚ଵ, 𝑚ଷ) ∈ Γ′′. That is, 𝐺′′ satisfies the transitivity 
condition, and therefore a path defines an independent set of 𝐺′′ and the length of the path corresponds to 
the economic value of the selected stopes. Moreover, the graph has no cycles; therefore, computing the 
longest path can in turn be reduced to a shortest-path problem. 


