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Abstract: In the context of planning the exploitation of an open-pit mine, the final pit limit problem 12 
consists of finding the volume to be extracted so that it maximizes the total profit of exploitation 13 
subject to overall slope angles to keep pit walls stable. To address this problem, the ore deposit is 14 
discretized as a block model, and efficient algorithms are used to find the optimal final pit. However, 15 
this methodology assumes a deterministic scenario, i.e., it does not consider that information, like 16 
ore grades, is subject to several sources of uncertainty. This paper presents a model based on sto- 17 
chastic programming, seeking a balance between conflicting objectives: on the one hand, it maxim- 18 
izes the expected value of the open-pit mining business, and simultaneously, minimizes the risk of 19 
losses, measured as Conditional Value at Risk (CVaR), associated with the uncertainty in the esti- 20 
mation of the mineral content found in the deposit, which is characterized by a set of conditional 21 
simulations. This allows generating a set of optimal solutions in the expected return vs. risk space, 22 
forming the Pareto front or efficient frontier of final pit alternatives under geological uncertainty. In 23 
addition, some criteria are proposed that can be used by the decision maker of the mining company 24 
to choose which final pit best fits the return/risk trade off according to its objectives. This method- 25 
ology was applied on a real case study, making a comparison with other proposals in the literature. 26 
The results show that our proposal better manages the relationship between expected return and 27 
risk (CVaR), up to 32% when comparing with a deterministic/traditional methodology. 28 

Keywords: stochastic final pit; geostatistics; open-pit mining; risk management; Pareto-optimal 29 
front. 30 
 31 

1. Introduction 32 
In simple terms, the final pit limit problem is defined as determining the ultimate 33 

mining limits of an ore deposit exploited by the open-pit mining method, such that a max- 34 
imum undiscounted profit is obtained from its extraction, respecting the precedence con- 35 
straints given by overall slope angles that ensure stable walls of the open-pit mine. 36 

The final pit limit plays a crucial role in long-term open-pit mine production plan- 37 
ning. It approximates the placement, size, shape, and depth of the mine at the end of its 38 
exploitation, determining important aspects for mine operation such as the layout of ac- 39 
cess roads, ramps, waste dumps, stockpiles, processing, and other facilities, as well as in 40 
developing a production schedule. Besides, different studies such as feasibility analyses, 41 
assessment of capital exposure, and corporate risk can be considerably affected by the 42 
results of non-optimum final pit limit determination [1]. 43 

As a first step, the ore deposit is modelled as a regular array of blocks, known as the 44 
block model. This model is constructed by interpolating information available at drill hole 45 
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samples obtained from the terrain. Several attributes are estimated, such as rock types, 46 
concentrations (grades) of relevant elements, density, among others, using geostatistical 47 
estimation techniques [2]. Then, an economic value that represents its profit is computed 48 
for each block. This value depends on the estimated geological attributes, and economic 49 
and operational parameters like ore price, costs, and metallurgical recoveries. The result 50 
of this is called the economic block model, and is the primary input for pit limit optimiza- 51 
tion [3]. 52 

The final pit decision is contemplated in the initial stages of strategic open-pit mine 53 
planning and can be solved efficiently by using Lerchs & Grossmann [4] or Pseudoflow 54 
[5,6] algorithms. However, as indicated before, it is based on a single, smooth representa- 55 
tion of the deposit [7]; therefore, the in-situ geological uncertainty is not taken into ac- 56 
count. This type of uncertainty comes from an incomplete knowledge of the ore deposit 57 
considering a reduced number of drill hole samples, restricted by exploration costs, lim- 58 
iting the estimation accuracy of the geological attributes. According to [8], the quality of 59 
the estimation depends mainly on the following: (i) the placement, quantity, and quality 60 
of the samples, (ii) the orebody classification, and (iii) the method used to generate the 61 
estimations. 62 

As mine exploitation progresses, new sample information is generated and the block 63 
model is updated. However, strategic mine planning decisions (such as mining sequence) 64 
have already been made, causing deviations in the planned production promises. As a 65 
result of the traditional approach, mining companies are often incapable of fulfilling pro- 66 
duction promises due to their inability to evaluate and minimize the consequences of ge- 67 
ological uncertainty in early stages of a mining project [9–12]. 68 

Conditional simulation is a geostatistical method for modeling geological uncertainty 69 
and a valuable tool for risk assessment in pit designs, generating equally probable scenar- 70 
ios (realizations) that represent the in-situ orebody variability [13–15]. There are many 71 
approaches for conditional simulation of continuous random variables, like ore grades as 72 
used in this work. Some are based on a normal score transformation and the assumption 73 
of multiGuassianity. These include sequential Gaussian simulation [2,16,17], turning 74 
bands simulation [18] and matrix decomposition simulation [19]. Other methods rely on 75 
an approximation of the conditional distribution done by defining thresholds and creating 76 
indicator variables, which are characterized through sequential indicator simulation [20]. 77 
In recent years, more advanced methods that use multiple-point statistics have been de- 78 
veloped [21,22] to simulate, accounting for patterns. Simulated annealing [23], direct se- 79 
quential simulation [24] and p-field simulation [25] provide other approaches that do not 80 
require the same assumptions of the abovementioned methods. 81 

Assuming there is a set of scenarios characterizing the geological uncertainty, for in- 82 
stance rock type and ore grades, the first challenge in mine planning is how to use this 83 
information to assess its impact on the plan. One option could be to obtain one final pit 84 
per scenario separately, and from them, decide of a single final pit, based on some well- 85 
defined criteria (Figure 1). A completely different option is a model that does not consider 86 
the input data (set of scenarios) separately but can consider them simultaneously in one- 87 
run and thus compute a single robust optimal final pit (Figure 2). 88 

  89 
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 90 
Figure 1. A first approach to compute final pit limit: (a) a set of realizations representing the geo- 91 
logical uncertainty are used as input individually, (b) the optimization computes a final pit for each 92 
realization, (c) a set of partial solutions are given, and (d) applying some criteria, a single final pit 93 
limit is selected. 94 

     95 

 96 
Figure 2. A second approach to compute final pit limit: (a) a set of realizations representing the 97 
geological uncertainty are used as input simultaneously, (b) the optimization computes a single so- 98 
lution for the entire set of realizations, and (c) a robust final pit limit is returned. 99 

However, because the final pit is one of the most critical and higher impact decisions 100 
in a mining project, some questions arise: 101 
• What final pit should be chosen for a given confidence level in terms of economic 102 

value or metal content from all possible options? or, 103 
• How would the final pit contour change if the ore grade variability is higher or lower 104 

than expected? 105 
Unfortunately, the traditional methodology to compute final pit limits cannot give 106 

answers to these critical questions. For this reason, it is crucial to generate robust final pit 107 
methodologies that consider geological uncertainty, especially at the beginning of a min- 108 
ing project, when a high level of uncertainty is present. 109 

One of the first efforts to include geological uncertainty into the final pit limit is by 110 
[26], which presented a hybrid approach within a set-theory framework. This work con- 111 
sidered final pits for several simulated realizations of the orebody and then defined the 112 
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so-called hybrid pit. Later, [10,27,28] compute pits based on the hybrid approach and pro- 113 
pose some reliability indexes for a pit. [29] proposed to use one of the simulated pits as 114 
the best pit design, capturing the upside potential of the orebody and minimizing the po- 115 
tential downside risk. [30] presented a workflow that includes the computation of a series 116 
of nested pits, considering the simulations of the block model and distributions of eco- 117 
nomic and geotechnical parameters as inputs. 118 

The above approaches can be used as a guide to assess the risk associated with geo- 119 
logical uncertainty; however, their main drawback is that the optimization process does 120 
not incorporate risk control. The solution is only obtained after a series of final pit limit 121 
problems are solved separately, following the approach presented in Figure 1. 122 

On the other hand, under the approach showed in Figure 2, we can identify the fol- 123 
lowing contributions: [31] presented the advantages of using a stochastic approach based 124 
on expected economic values rather than expected ore grades, from a set of simulated 125 
realizations of ore grade. [32] proposed a constrained version of the problem, incorporat- 126 
ing the risk management directly into the optimization model in a probabilistic frame- 127 
work. In the same line, [33,34] incorporated grade uncertainty on a modified version of 128 
the model for the final pit limit problem, where extraction and processing decisions are 129 
taken separately, proposing a two-stage scheme. [35] used risk measures to incorporate 130 
geology and market uncertainty into the investment, pit design, and mining sequence de- 131 
cisions, but unfortunately, they do not perform the methodology on a real case study. 132 

More recently, [36] develops a mean-variance criterion approach to finding near-op- 133 
timal final pit limits by using a heuristic procedure considering geological uncertainty, 134 
generating a set of solutions on the mean-variance efficient frontier. Then, based on some 135 
stochastic dominance rules, the authors eliminate sub-optimal solutions. Some drawbacks 136 
of this approach are: (i) standard deviation as a risk measure does not consider skewness; 137 
(ii) the proposed heuristic algorithm cannot guarantee an optimal solution, because it uses 138 
a greedy optimizer, besides some parameters of the algorithm must be chosen manually. 139 
A second work, [37], focuses on the theoretical problem and proposes properties that a 140 
risk-averse measure for final pit limit should have: (i) nestedness of pits for different risk 141 
aversion levels, and (ii) additive consistency, which states extraction order should not be 142 
affected by precedences of farther parts of the mine. They show that only an entropic risk 143 
measure complies with these properties and propose an approximation scheme based on 144 
a two-stage stochastic model. Finally, interesting research was developed by [38], who 145 
presented a comprehensive overview of the applications and trends of multi-criteria de- 146 
cision-making methods applied in mining and mineral processing problems. 147 

In this paper, we propose a methodology based on a stochastic optimization model 148 
that maximizes expected profit while controlling maximum risk in terms of conditional 149 
value at risk in mining projects, and apply it to a real case study. The orebody is modelled 150 
through several simulated realizations to incorporate explicit risk control in open-pit mine 151 
design and evaluation. As a result, the efficient frontier of final pit limit alternatives in the 152 
expected profit vs. risk environment is obtained. Additionally, we propose some criteria 153 
to choose pits from the efficient frontier depending on the decision maker's risk aversion. 154 

2. Materials and Methods: Modelling, notation, and problem statement 155 
In this section, we present the main notation and formulation for the final pit limit 156 

problem. Section 2.1 presents the model for the deterministic case of final pit, Section 2.2 157 
introduces basic concepts of conditional value at risk. Based on these preliminary 158 
concepts, Section 2.3 states the problem addressed in this work by providing a 159 
formulation to compute the final pit considering a representation of geological uncertainty 160 
explicitly. 161 

2.1. Final pit limit: deterministic case 162 
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Let 𝐵 be the block model and 𝑏 a block. 𝑃𝑅𝐸𝐶! ⊂ 𝐵 − {𝑏} denotes the subset of 163 
blocks above block 𝑏 that must be extracted before it, respecting maximum slope angles. 164 
An economic block value �̅�! is precomputed for block 𝑏. By using integer programming, 165 
the decision variables are defined as 166 

𝑥! = /1, if	block	𝑏	belongs	to	the	final	pit,0, otherwise																							  (1) 

 167 
Thus, the final pit limit is the solution to the following 168 
 169 

(𝑃)   𝑚𝑎𝑥 I�̅�!
!∈#

	𝑥!  (2) 

𝑠. 𝑡. 𝑥! ≤ 𝑥$ ∀𝑏 ∈ 𝐵, 𝑎 ∈ 𝑃𝑅𝐸𝐶! (3) 

 𝑥! ∈ {0,1} ∀𝑏 ∈ 𝐵 (4) 

where Equation (2) represents the maximum undiscounted total profit of blocks within 170 
final pit limits. Equation (3) ensures the shape of the ultimate pit respects the overall slope 171 
angle, and Equation (4) indicates the decision variables are binary. There exist fast algo- 172 
rithms to solve this problem [5,6,39]. As stated above, the geological uncertainty is not 173 
considered in this formulation. Therefore, this model does not capture the risk associated 174 
with a non-accurate ore resource estimation. 175 

2.2. Background on risk measures: conditional value at risk 176 
In mining under geological uncertainty, the term risk refers to the potential economic 177 

losses caused by a misleading ore resource estimation. One tool used to reduce the risk of 178 
losses is the value at risk (VaR). Let 𝛿 ∈ (0,1) be the risk level and 𝑓(𝒙, 𝒚) a loss function 179 
for a decision vector 𝒙 ∈ 𝑋 and a random vector 𝒚 ∈ ℝ%. For a given 𝒙, 𝑓(𝒙, 𝒚)  is a ran- 180 
dom variable having a distribution into ℝ induced by 𝒚. Ψ(𝒙, 𝜁) is the probability that 181 
the loss function 𝑓(𝒙, 𝒚)  does not exceed a threshold value 𝜁 , that is, Ψ(𝒙, 𝜁) = 182 
ℙ[𝑓(𝒙, 𝒚) ≤ 𝜁]. Ψ(𝒙, 𝜁) is the cumulative distribution for the loss associated to 𝒙, which 183 
depends on 𝜁 considering 𝒙 as fixed. Thus, 184 

VaR&(𝒙) = min	{𝜁 ∈ ℝ:	Ψ(𝒙, 𝜁) ≥ 𝜁} (5) 

However, this risk measure has some drawbacks, as reported in [40], such as lack of 185 
sub-additivity or lack of control by losses exceeding VaR. Thus, Rockafellar and Uryasev 186 
[41] propose a different measure of risk, namely the conditional value at risk (CVaR), 187 
which represents the conditional expected loss given that the loss exceeds VaR. For con- 188 
tinuous distributions 189 

CVaR&(𝒙) = (1 − δ)'(b 𝑓(𝒙, 𝒚)	𝑝(𝒚)	𝑑𝒚
)(𝒙,𝒚)/0$1!(𝒙)

 (6) 

where 𝑝(𝒚) is the density of 𝒚. To avert difficulties with VaR&(𝐱) into Equation (6), 190 
Rockafellar and Uryasev give an alternative representation that characterizes both 191 
VaR&(𝐱) and CVaRδ(x) in terms of 𝐹3 on 𝑋 × 𝑅: 192 

F&(𝒙, 𝜁) = 𝜁 + (1 − δ)'(b (𝑓(𝒙, 𝒚) − 𝜁)	𝑝(𝒚)	𝑑𝒚
𝒚∈ℝ"

 (7) 

quantifying the losses that exceed VaR, acting as an upper bound for it at the same confi- 193 
dence level 𝛿. Besides, CVaR is convex and a coherent risk measure [42], allowing the 194 
implementation of optimization algorithms to determine it. The integral in Equation (7) 195 
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can be approximated in several ways: for instance, by sampling the probability distribu- 196 
tion of 𝒚 according to its density 𝑝(𝒚), from which a collection of 𝑅 equally probable 197 
vectors 𝒚(, … , 𝒚1 is obtained. Therefore, the corresponding approximation to 𝐹3(𝒙, ζ) is 198 

Fm&(𝒙, 𝜁) = ζ +
1

𝑅	(1 − 𝛿)I
[𝑓(𝒙, 𝒚𝒓) − 𝜁]6

1

78(

 (8) 

where [𝑡]6 = max	{𝑡, 0}. As shown in [41], an approximation of minimum CVaR is found 199 
by minimizing Equation (8). Note that the optimization simultaneously gives the optimal 200 
decision 𝒙∗, VaR&(𝒙∗) and CVaR&(𝒙∗). Henceforth, when we refer to CVaR, we strictly 201 
mean the approximation to CVaR since geological uncertainty is represented employing 202 
a finite number of scenarios. Finally, to avoid the non-linear function [𝑓(𝒙, 𝒚𝒓) − 𝜁]6  into 203 
Equation (8), we will use auxiliary variables 𝑧7, for all 𝑟 ∈ ℛ = {1,… , 𝑅}, 204 

[𝑓(𝒙, 𝒚𝒓) − 𝜁]6 = {𝑧7 ≥ 0 ∶ 	 𝑧7 ≥ 𝑓(𝒙, 𝒚7) − 𝜁} (9) 

Further details on minimization of CVaR can be found in [41]; for properties, strong 205 
and weak features of VaR and CVaR risk measures, see [42]; and for illustrations with 206 
several examples, see [43]. Applications on optimization problems, including CVaR con- 207 
straints, are addressed in [44]. 208 
2.3. Problem statement: Risk-based final pit limit 209 

Consider several realizations 𝒚(, … , 𝒚1 of random variable 𝒚 from resource models 210 
indexed by 𝑟 ∈ ℛ to represent the geological uncertainty. For example, 𝒚7 may be inter- 211 
preted as the ore grade or metal content according to realization 𝑟. In this case, 212 

𝒚7 = (𝑦!7)!∈#								∀	𝑟 ∈ ℛ (10) 

An economic block model can be stated per realization, i.e., 𝑣!7 indicates the block 213 
value according to the metal content 𝑦!7 from realization 𝑟 ∈ ℛ and block 𝑏 ∈ 𝐵. Con- 214 
trary to the above, the traditional methodology proposes that a single economic value �̅�! 215 
is obtained per block when the metal content 𝑦s! is estimated by using estimation meth- 216 
ods such as inverse distance, kriging, or e-type [2]. 217 

As before, the decision vector 𝒙 = (𝑥!)!∈#  corresponds to the selection of blocks 218 
within the final pit limit. Regarding the loss function for each realization 𝑟 ∈ ℛ, we pro- 219 
pose to measure the losses (or gains) associated with deviations of economic values from 220 
each realization regarding an economic value provided according to one of the determin- 221 
istic/traditional methods. Therefore, the loss function may be expressed as 222 

𝑓(𝒙, 𝒚7) =I(�̅�! − 𝑣!7)	𝑥!
!∈#

								∀	𝑟 ∈ ℛ (11) 

Finally, considering all the above notation, we present the stochastic optimization 223 
model that seeks the maximum expected profit under CVaR constraints. 224 

 225 

(𝑃:)   𝑚𝑎𝑥 
1
𝑅II 𝑣!7	𝑥!7

7∈ℛ,!∈#

  (12) 

𝑠. 𝑡. 𝑥! ≤ 𝑥$ ∀𝑏 ∈ 𝐵, 𝑎 ∈ 𝑃𝑅𝐸𝐶! (13) 

 𝜁 +
1

𝑅	(1 − 𝛿)	I𝑧7
7∈ℛ

≤ 𝜇  
(14) 

 𝑧7 ≥ 𝑓(𝒙, 𝒚𝒓) − 𝜁 ∀𝑟 ∈ 	ℛ (15) 

 𝑧7 ≥ 0 ∀𝑟 ∈ 	ℛ (16) 
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 𝑥! ∈ {0,1} ∀𝑏 ∈ 𝐵 (17) 

Equation (12) shows the objective function, maximizing expected undiscounted 226 
profit of the final pit limit. Equation (13) establishes slope precedence among blocks, Equa- 227 
tion (14) limits the maximum risk 𝜇 ≥ 0 allowed in terms of CVaR by considering a con- 228 
fidence level 𝛿 ∈ (0,1) along 𝑅 geological scenarios. Equations (15) and (16) are imposed 229 
by auxiliary variables, and Equation (17) denotes the nature of decision variables. 230 

Note that an optimal solution (𝒙∗, 𝜁∗, 𝒛∗) to (𝑃:) for a given 𝜇 ≥ 0, determines the 231 
blocks inside the final pit limits, the expected undiscounted profit, both VaR (𝜁∗) and 232 
CVaR, and how the impact of each scenario 𝑟 into CVaR is distributed. 233 

Varying the parameter value 𝜇 in the model (𝑃:) allows analysing the trade-off be- 234 
tween (maximum) expected profit of the final pit limit and (minimum) risk of loss in terms 235 
of CVaR. A procedure for defining the set of parameters 𝜇 to be considered is as follows: 236 

 237 
Procedure 1.  238 
• Find the maximum risk level: to solve the maximum-profit problem, ignoring any con- 239 

straints on the level of risk, thus obtaining a maximum risk level 𝜇%$< as CVaR. 240 
• Find the minimum risk level: to solve a minimum-risk problem, ignoring any profit con- 241 

straint, thus obtaining a minimum risk level 𝜇%=> as CVaR, and 242 
• Partition the set of possible risk levels: to solve the problem (𝑃:) for a set of values 243 

𝜇 = 𝛼	𝜇%=> + (1 − 𝛼)	𝜇%$<								, 𝛼 ∈ [0,1] (18) 

Figure 3a illustrates the shape of the curve obtained by varying the parameter 𝜇 in 244 
the expected-profit vs. risk plane. Because no final pit above the frontier is possible 245 
and alternatives below the frontier are sub-optimal, this curve defines the efficient 246 
frontier of final pit alternatives whether with higher expected profit keeping the risk 247 
bounded or one with lower risk but without reducing profit (see Figure 3b). This 248 
boundary allows the investor to make the best decision on which is the final pit of 249 
maximum profit, for a given risk level, or to minimize the risk when a particular re- 250 
turn is expected. 251 
 252 

  
(a) (b) 

Figure 3. Efficient frontier in the expected profit vs. risk plane. (a) Each point represents an alterna- 253 
tive to the final pit limit. (b) The feasible region under the frontier: point A represents a sub-optimal 254 
final pit decision, and points B and C on the efficient frontier are two better alternatives, in terms of 255 
risk and expected profit, respectively. 256 

Some of the criteria that a decision-maker could use to choose a specific final pit limit 257 
from the frontier are: 258 
1. (C1) The ideal point is defined as the unfeasible solution located above the frontier, 259 

where each criterion is optimized separately (maximum expected return and mini- 260 
mum risk). This criterion proposes to select the final pit that presents the minimum 261 
distance to the ideal point. Some distance measures available are Euclidean, normal- 262 
ized, Manhattan, among others [45].     263 
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2. (C2) To select the final pit that reports the most significant difference between ex- 264 
pected return and CVaR. 265 

3. (C3) A priori, it is possible that due to the company's internal policies, the decision- 266 
maker may not be able to accept projects with higher risk than a given value 𝜇?. In 267 
this case, the criterion suggests selecting the pit alternative with higher value and risk 268 
limited by 𝜇?. 269 

4.  (C4) Contrary to the previous case, the decision-maker may want to minimize the 270 
risk but ensuring a minimum return 𝑉?. In this case, the criterion proposes to select 271 
the final pit with minimum CVaR so that the expected return is greater than or equal 272 
to 𝑉?. 273 
The interesting results in the efficient frontier are found in the p-range (points of the 274 

efficient frontier that are in the p% of a more significant expected profit zone). In general, 275 
the final pit limit decision will be taken within this range, looking for the alternative that 276 
maintains a high expected profit and reduces the associated risk. Finally, note that it is 277 
essential to avoid comparing VaR and CVaR values for the same level of confidence, be- 278 
cause they indicate information from different parts of the loss distribution. 279 

3. Implementation and Results 280 
The methods presented in Section 2 are applied to a real porphyry copper deposit as 281 

a case study (Section 3.1). The experiments are as follow: (i) generating several optimum 282 
final pit alternatives (efficient frontier) for a family of parameters 𝜇 (Section 3.2), from a 283 
set of simulated realizations, and (ii) comparing in terms os expected profit vs. risk envi- 284 
ronment, the efficient frontier with the final pit obtained by using the traditional method- 285 
ology (deterministic case) and other approaches as presented in Figure 1 (Section 4).  286 

To solve the instances of the model (𝑃:), GUROBI was used as optimization solver, 287 
version 9.0.3. The code's execution was performed on an Intel Xeon CPU E5-2660 V3 ma- 288 
chine with 10 cores at 2.6 GHz, 128 Gb and running Windows 10 Pro. 289 

3.1. Dataset and instances 290 
The block model corresponds to a porphyry copper deposit (known as BMT, for con- 291 

fidentiality reasons). This block model has 407,179 blocks of 10m x 10m x 10m and contains 292 
information about spatial coordinates, density, and 50 conditional simulations of copper 293 
grade generated by a sequential Gaussian simulation algorithm. In this method, the orig- 294 
inal samples are transformed to normal scores and a standard Gaussian random variable 295 
is simulated in a spatial grid. Each node of this grid is visited sequentially in a random 296 
order, performing a simple kriging estimation using the previously simulated nodes and 297 
the normal scores of the true data to condition its value, and drawing a random number 298 
from a Gaussian distribution with mean and variance given by the kriging estimate and 299 
variance, respectively, to obtain the simulated value, which is then back-transformed to 300 
the original grade scale [46]. We assume that the 50 simulated realizations are sufficient 301 
to capture the actual variability of copper grades, and we use the E-Type model (average 302 
of the 50 realizations) as the standard representation of the metal content estimation con- 303 
sidered in the deterministic approach. 304 

Figure 4 shows three different simulated realizations of the copper grade, in addition 305 
to the average grade for a plan-view at z = 2015m. 306 

Figure 5a shows the average histogram of copper grades, including error bars along 307 
all set of realizations. Finally, grade-tonnage curves are plotted to quantify the recoverable 308 
resources to different cut-off grades (Figure 5b). Both figures represent error bars with 5th 309 
and 95th percentile per interval, showing low uncertainty in copper grades and ore ton- 310 
nages. 311 



Mathematics 2021, 9, x FOR PEER REVIEW 9 of 18 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. z = 2015m - plan-views of copper grades for BMT, simulated realizations (a), (b), (c) and 312 
E-Type model (d). 313 

  
(a) (b) 

Figure 5. Summary of BMT block model: (a) Histogram of copper grades, (b) Grade-tonnage 314 
curves for the set of simulated realizations and E-Type model. Both graphs include error bars with 315 
5th and 95th percentile per interval. 316 

Precedence arcs and economic block values are provided. In this case, slope prece- 317 
dence requirements respect 45° overall slope angle in pit walls, but the model can be im- 318 
plemented with other slope angles. 319 
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3.2. Results from stochastic model 320 
In this section the results for stochastic final pit limit obtained from model (𝑃:) are 321 

shown considering a 𝛿 = 95% confidence level in risk assessment through the CVaR. Ap- 322 
plying Procedure 1, Table 1 shows the main numerical results obtained (columns indicate 323 
from left to right): the parameter 𝛼 that determines the maximum risk 𝜇 allowed accord- 324 
ing to Equation (18), VaR, CVaR, expected profit, and the distance (Euclidean metric) to 325 
the ideal point (DIP), which is presented as a decision criterion. 326 

Table 1. Numerical results from efficient frontier for stochastic final pit alternatives obtained with 327 
a confidence level of 95%. 328 

𝜶 VaR 
[MUSD] 

CVaR 
[MUSD] 

Exp. Profit 
[MUSD] 

DIP 
[MUSD] 

0.000 155.6 200.0 2058.7 200.0 
0.100 155.1 180.0 2053.1 180.1 
0.125 151.9 175.0 2049.5 175.2 
0.200 139.9 160.0 2035.8 161.6 
0.250 139.5 150.0 2022.7 154.3 
0.300 132.7 140.0 2009.5 148.4 
0.375 123.9 125.0 1982.5 146.4 
0.400 120.0 120.0 1970.5 148.9 
0.500 96.4 100.0 1904.8 183.5 
0.625 73.7 75.0 1727.4 339.6 
0.750 49.9 50.0 1551.3 509.8 
0.875 24.9 25.0 1016.5 1042.5 
1.000 0.0 0.0 0.0 2058.7 

All results are within an optimality gap of 1%. Note that the final pit decision yields 329 
an empty pit when looking for the minimum risk, i.e., it is equivalent to perform no min- 330 
ing operation. These results allow us plotting the pair (CVaR, expected profit) forming the 331 
efficient frontier, or Pareto front (Figure 6a): the points represent different final pit alterna- 332 
tives, each with its respective expected profit and risk. The ideal point (brown) is plotted 333 
as a reference according to criterion (C1). 334 

 335 
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(a) (b) 

Figure 6. Results from efficient frontier applied on BMT block model: (a) Efficient frontier between 336 
risk (CVaR) and expected profit for the final pit alternatives, with a confidence level of 95%, (b) 337 
Graph showing ore and waste tonnages and average grade per final pit alternative when varying 338 
the parameter 𝜇. Both graphs (ore and grade) include error bars with 5th and 95th percentile per 339 
interval. 340 

The interesting results on the efficient frontier are found in the 𝑝-range (as explained 341 
above). Considering a 20-range, reaching a reduction of up to 20% of expected profit, the 342 
final pit alternatives from parameters 𝜇 = 200 [MUSD] to 𝜇 = 75 [MUSD] are inside this 343 
range. The limit case (𝜇 = 75 [MUSD]) includes the final pit whose risk is reduced by 344 
approximately 63%, while expected profit drops almost 16%. Regarding the expected 345 
tonnages of ore and waste material for each final pit alternative on the efficient frontier, 346 
Figure 6 shows how expected ore and waste tonnages decrease as the parameter 𝜇 de- 347 
creases: this should be interpreted as a renunciation of riskier areas within the deposit. 348 
Ore tonnage and average grade deviations are represented through error bars showing 349 
both 5th and 95th percentiles along with all geological scenarios. 350 

Figure 7 shows the contribution of 𝑧7 to CVaR through ℛ. These contributions are 351 
the ones that generate the differences between columns VaR and CVaR in Table 1. Note 352 
that the way scenarios contribute to the CVaR is not intuitive because the decision is 353 
strongly dependent on the upper bound 𝜇 on Equations (14) – (15). In this case study, not 354 
all geological scenarios contribute to CVaR in the optimization process; only 11 out of 50 355 
scenarios present total net losses, with realization indexed by 𝑟 = 5 being the one that 356 
presents the highest loss. Other scenarios show losses as well, decreasing the total contri- 357 
bution (in MUSD) as the parameter 𝜇 decreases, but the final pit with parameter 𝜇 = 120 358 
presents VaR = CVaR, therefore ∑ 𝑧77∈ℛ = 0. 359 

 360 



Mathematics 2021, 9, x FOR PEER REVIEW 12 of 18 
 

 

 361 
Figure 7. Contribution of 𝑧! to CVaR through ℛ for each value 𝜇. 362 

Finally, Figure 8 shows plan-views and cross-sections for some final pits, particularly 363 
those obtained with parameters 𝜇 = 200, 125, 25 [MUSD]: significant differences in size 364 
and shape among the obtained pits can be observed, especially at the bottom of the pits. 365 
 366 

 

 

(a) plan view, final pit 𝜇 = 200 (b) 5030m –NS view, final pit 𝜇 = 200 

 
 

(c) plan view, final pit 𝜇 = 125 (d) 5030m –NS view, final pit 𝜇 = 125 
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(e) plan view, final pit 𝜇 = 25 (f) 5030m –NS view, final pit 𝜇 = 25 
Figure 8. Views of final pit alternatives for the model BMT considering different parame- 367 
ter values 𝜇 = 200, 125, 25 [MUSD] and a confidence level 𝛿 = 95%. 368 

4. Discussion 369 
Once the efficient frontier is determined, it is interesting to know its relative position 370 

regarding several final pit decisions obtained from other strategies. In this section we pre- 371 
sent a comparison of our approach based on the maximization of expected profit but con- 372 
trolling risk, with other approaches: (i) E-Type, as the only deterministic representation of 373 
the deposit; (ii) Expected-profit, as shown in [31]; (iii) Best-simulation as pit design, similar 374 
to [29]; and (iv) Hybrid-pit, as presented in [26]. All these results are located in the feasible 375 
region within the profit-risk plane. For comparison purposes, the ’best’ final pit from the 376 
efficient frontier will be chosen according to the criterion (C1) from Section 2.3, that is, by 377 
using parameter 𝜇 = 125 [MUSD]. However, the same analysis can be generalized by 378 
considering other points on the efficient frontier. 379 

In the cases of (i) E-Type, and (ii) Expected-profit, an optimization program (𝑃) de- 380 
fined by Equations (2) – (4) (differentiated by the economic block models) is used to com- 381 
pute a single final pit limit. To find the position of each final pit in the expected profit vs. 382 
risk plane, we must solve the program (𝑃:"#$) through Equations (12) – (17) but fixing 383 
the variables 𝑥! to the values obtained according to the predefined final pit. Therefore, 384 
the model (𝑃:"#$) only solves for the variable 𝑧7. With this, CVaR and expected profit 385 
values can be computed for each final pit. In the cases of (iii) Best-simulation and (iv) Hy- 386 
brid-pit, 50 different results were obtained, but the chosen ones are those with minimum 387 
value according to criterion (C1) after applying model (𝑃:"#$).  388 

Figure 9 shows the risk and profit for all methodologies and the reference ideal point. 389 
As expected, the final pit from [31] reaches the same result obtained in the efficient frontier 390 
with parameter 𝜇 = 200 [MUSD]: in this case, the model (𝑃:) maximizes expected profit 391 
regardless of the risk of losses. The rest of the alternatives are suboptimal.  392 

 393 
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 394 
Figure 9. Alternatives of final pits in expected profit vs. risk plane. 395 

Table 2 shows a summary of the comparison: CVaR, expected profit and distance to 396 
ideal point (DIP, criterion C1), and their respective relative variations (RV, in %), for each 397 
alternative compared to the stochastic final pit obtained with 𝜇 = 125 [MUSD], which 398 
minimizes DIP, as shown in Table 1. In this case study, there is up to 32% improvement 399 
from our stochastic final pit compared to the deterministic one. 400 

Thus, the stochastic final pits in the efficient frontier offer the best trade-off between 401 
lower risk in terms of CVaR and higher expected profit when compared to other alterna- 402 
tives, especially the deterministic one. Therefore, applying the proposed model based on 403 
stochastic programming reduces the risk and maximizes the expected profit. However, 404 
the quantification of this better performance depends on the grade distribution, the rep- 405 
resentation of geological uncertainty, and the parameters used in each case study. The 406 
efficient frontier's knowledge using geological scenarios allows making better decisions 407 
in strategic open-pit mine production planning regarding expected profit, risk, or both. 408 

Table 2. A comparison among several final pits alternatives in terms of expected profit and risk (CVaR). 409 

Final pit method CVaR  
[MUSD] 

RV 
% 

Exp. Profit 
[MUSD] 

RV 
% 

DIP 
[MUSD] 

RV 
% 

Stochastic (proposed) 125.00 - 1982.50 - 146.37 - 

Expected profit 204.28 63.42 2058.65 3.84 204.28 39.56 

Best-simulation 176.02 40.81 2013.77 1.58 181.65 24.10 

Hybrid-pit 197.64 58.11 2031.07 2.45 199.56 36.34 

E-Type 189.34 51.47 2021.45 1.96 192.96 31.83 

 410 

5. Conclusions and future work 411 
This paper develops a stochastic model that allows generating the efficient frontier 412 

of final pit limit alternatives under geological uncertainty in the expected profit vs. risk 413 
context. The variability of the deposit is modelled using several conditional simulations, 414 
and the risk of losses is measured in terms of conditional value at risk. The proposed 415 
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methodology's main advantage is the generation of an optimal policy to manage the trade- 416 
off between expected profit and risk, represented by the efficient frontier, allowing the 417 
evaluator to make the best decision according to the mining company's interests and its 418 
aversion to risk. 419 

 To test the performance of the proposed methodology to determine final pits, the 420 
efficient frontier obtained was compared with different approaches available in the liter- 421 
ature. The criterion used was to minimize the distance to the ideal point (DIP, the unfea- 422 
sible final pit with maximum expected profit and minimum risk along the efficient fron- 423 
tier). Our approach shows better results in controlling the risk of suffering economic losses 424 
without renouncing high expected profit. 425 

Future research work includes developing new efficient algorithms for finding opti- 426 
mal solutions, because computing time will be a limitation when finding solutions of (𝑃:) 427 
for a model including millions of blocks and hundreds of conditional simulations repre- 428 
senting the geological uncertainty. As an alternative approach, instead of computing the 429 
entire efficient frontier of final pits, one may optimize the criterion directly (a priori meth- 430 
ods) and compute one optimal solution according to the decision-maker preferences 431 
[47,48]. 432 

 Finally, it would be interesting to explore other criteria to compute optimal solutions; 433 
or select them from the efficient frontier. This paper proposed some guidelines, and the 434 
stochastic dominance ideas developed by [36] are another interesting starting point to 435 
continue researching on this topic. 436 
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