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ABSTRACT 
Conventional geostatistical algorithms cannot reproduce bivariate complexities such as inequality 
constraint, nonlinearity and heteroscedasticity. Poor reproduction of these features may decrease 
the accuracy and reliability of mine planning results. For example, it is not unusual to have an 
inequality constraint between primary and disturbing elements in a metalliferous deposit. 
Implementation of traditional methodologies for such complex data sets can lead to the incorrect 
reproduction of a bivariate relationship, which will affect the validity of NPV results. In this paper, an 
iron data set containing iron and silica grades with an inequality constraint between variables is 
introduced as a case study. This study proposes an algorithm based on a hierarchical sequential 
Gaussian cosimulation integrated with inverse transform sampling. The proposed methodology 
considers the linear inequation between two variables in the hierarchical cosimulation process to 
reproduce an inequality constraint. As a comparison, conventional sequential Gaussian cosimulation 
is also applied to the same data set to demonstrate the difference in bivariate relationships from both 
models. Unlike the proposed algorithm, the conventional cosimulation cannot reproduce an 
inequality constraint and slightly overestimates silica grades. The modelled realisations are then 
used to assess the uncertainty of a plan and generate a stochastic strategy that adapts the 
destination of the blocks depending on the scenario. Two-stage stochastic long-term production 
scheduling takes extraction decisions using average information (ie e-type model) and ore/waste 
destinations based on geostatistical realisations. As a result, the proposed strategy is closer to the 
upper bound, highest possible NPV for each realisation, than to the lower bound, deterministic 
strategy that does not manage the risk of sending extracted material to wrong destinations. 
Furthermore, Comparing production schedules resulting from proposed and conventional 
geostatistical methodologies shows the importance of inequality constraint reproduction and more 
accurate long-term mine planning. 

INTRODUCTION 
The objective of long-term production scheduling in open pit mines is to generate a life-of-mine 
schedule with defined extraction periods and destinations for each mining block, while maximising 
net present value (NPV) and respecting operational constraints. Mixed integer programming (MIP) 
(Gershon, 1983) is a popular production scheduling approach used in the industry. Nevertheless, 
despite its effectiveness in maximising NPV and producing optimal solutions, it uses a single block 
model as an input. As a result, such deterministic mine planning methodologies can not control the 
deviations from production targets, leading to a high risk of not meeting them. Alternatively, using 
geostatistical realisations produced by simulation/cosimulation methodologies as inputs in MIP leads 
to suboptimal results (Ramazan and Dimitrakopoulos, 2004). Therefore, stochastic production 
scheduling approaches are required to effectively minimise the risk of not meeting production targets, 
maximise NPV and satisfy operational constraints. 

Stochastic production scheduling approaches, such as simulated annealing (Godoy and 
Dimitrakopoulos, 2004) and stochastic integer programming (SIP) (Ramazan and Dimitrakopoulos, 
2018), aim to produce optimal solutions with maximised NPV and minimised risks by using multiple 
unbiased scenarios of the economic block model. Simulated annealing can help to generate a 
26 per cent higher NPV than the deterministic method (Leite and Dimitrakopoulos, 2007), but SIP 
can also make optimal waste removal decisions (Dimitrakopoulos, 2011). However, the integration 
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of uncertainty into stochastic mine planning approaches sometimes leads to a higher number of 
binary variables. One solution for this issue is replacing some variables with continuous ones and 
assigning binary variables only to waste blocks (Ramazan and Dimitrakopoulos, 2013). On the other 
hand, a two-stage stochastic production scheduling (Moreno et al, 2017) can be used as a more 
scalable alternative. In that approach, the first stage produces scheduling based on average 
information, similar to the deterministic method. The second stage corresponds to resource 
decisions taken using geostatistical realisations as different equally possible scenarios. According 
to Moreno et al (2017), extraction decisions should be taken in the first stage, while processing 
decisions – in the second. 

Another problem with long-term production scheduling is the limited amount of information that 
mostly comes from exploration boreholes. Geostatistical resource modelling aims to generate 
spatially accurate models of mineral grades and geological domains using borehole data (Journel, 
1999). In deposits containing multiple sampled elements, the spatial correlation between variables 
is a crucial source of information. Multivariate geostatistics considers the cross-covariances between 
variables to produce more valid models (Wackernagel, 2003). Nevertheless, traditional multivariate 
methods struggle to reproduce bivariate complexities, such as nonlinearity, heteroscedasticity and 
inequality constraints. It is particularly true for inequality constraints, which are common in mining 
deposits. Several methods based on the decorrelation of variables have been developed for the 
specific cases involving inequality constraints (Emery, Arroyo and Peláez, 2014; Arcari Bassani, 
Costa and Deutsch, 2018; Abildin, Madani and Topal, 2019). Recently, Madani and Abulkhair (2020) 
proposed a new methodology based on the acceptance-rejection technique integrated into 
hierarchical cosimulation. However, an acceptance-rejection technique iteratively re-simulates 
values that are outside an inequality constraint, making this algorithm much slower than traditional 
cosimulation. Therefore, Abulkhair and Madani (2021) replaced this method with an inverse 
transform sampling that makes only one iteration to re-simulate faulty values (ie values that are 
outside an inequality constraint). 

This study demonstrates the performance of two-stage production scheduling and updated 
hierarchical cosimulation integrated with inverse transform sampling. Inverse transform sampling 
helps to re-simulate values, which do not respect an inequality constraint. Moreover, the proposed 
production scheduling approach evaluates fixed production periods using an average (ie e-type) 
resource model in the first stage, and then re-evaluates block destinations based on geostatistical 
realisations as the second stage decisions. 

METHODOLOGY 

Hierarchical cosimulation integrated with inverse transform sampling 
The proposed cosimulation algorithm is an updated version of hierarchical sequential Gaussian 
cosimulation (Almeida and Journel, 1994). The basic idea of this algorithm is to simulate 
coregionalised variables hierarchically: the variable with the most autocorrelation is simulated first 
and then secondary variables are simulated conditional to the previous simulation results. This study 
is inspired by hierarchical cosimulation developed by Madani and Abulkhair (2020), in which an 
acceptance-rejection method integrated into the second simulation helps to model the secondary 
variable within an inequality constraint. However, an inverse transform sampling approach is used 
in this study as a faster alternative, while multiple and multicollocated neighbourhood strategies are 
implemented in the first and second simulations, respectively. For brevity, the readers are referred 
to both of these papers (Almeida and Journel, 1994; Madani and Abulkhair, 2020) to understand the 
basic methodology of hierarchical cosimulation, while the whole algorithm is proposed in Abulkhair 
and Madani (2021). The following steps demonstrate the procedure of an inverse transform sampling 
in detail: 

1. Back transform simulated normal scores of the primary variable 𝑍ଵ
௡ሺ𝑥௜ሻ (ie variable modelled 

during the first simulation) to the original scale 𝑌ଵ
௡ሺ𝑥௜ሻ for each block 𝑖 in 𝑛 realisations. 

2. Obtain the maximum 𝑚𝑎𝑥 and minimum 𝑚𝑖𝑛 truncated thresholds of the secondary variable 
𝑌ଶ
௡ሺ𝑥௜ሻ based on the primary variable 𝑌ଵ

௡ሺ𝑥௜ሻ. In the case of negative inequation, where 
𝑌ଶ
௡ሺ𝑥௜ሻ ൑ 𝑎 ∙ 𝑌ଵ

௡ሺ𝑥௜ሻ ൅ 𝑏, [𝑚𝑖𝑛,𝑚𝑎𝑥] intervals are identified as follows: 
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 𝑚𝑖𝑛௡ሺ𝑥௜ሻ ൌ minሺ𝑌ଶሻ   𝑚𝑎𝑥௡ሺ𝑥௜ሻ ൌ 𝑎 ∙ 𝑌ଵ
௡ሺ𝑥௜ሻ ൅ 𝑏 (1) 

Where: 

minሺ𝑌ଶሻ  is a minimum value of the secondary variable 

𝑎  is a slope 

𝑏  is an intercept. 

3. Transform 𝑚𝑖𝑛௡ሺ𝑥௜ሻ and 𝑚𝑎𝑥௡ሺ𝑥௜ሻ thresholds into normal scores. 

4. Identify values of the secondary variable that are not located within [𝑚𝑖𝑛,𝑚𝑎𝑥] interval and 
store them as 𝑍ଶ

௠ሺ𝑥௜ሻ. 

5. Generated random numbers within truncated thresholds 𝑉௠ሺ𝑥௜ሻ using an inverse transform 
sampling (Devroye, 1986): 

 𝑉௠ሺ𝑥௜ሻ ൌ 𝐹ିଵ൫𝐹ሺ𝑚𝑖𝑛௠ሻ ൅ ൫𝐹ሺ𝑚𝑎𝑥௠ሻ െ 𝐹ሺ𝑚𝑖𝑛௠ሻ൯ ∙ 𝑈൯ (2) 

Where: 

𝐹ିଵ  is a quantile function 

𝐹  is a conditioned cumulative distribution function 

𝑈  is a random number generated uniformly between 0 and 1.  

6. Re-simulate values 𝑍ଶ
௠ሺ𝑥௜ሻ identified in step 3 using random numbers 𝑉௠ሺ𝑥௜ሻ in the following 

way: 

 𝑍ଶ
௠ሺ𝑥௜ሻ ൌ 𝑍ଶெ஼஼௄ሺ𝑥௜ሻ ൅ ට𝜎ଶ

ଶ
ெ஼஼௄ሺ𝑥௜ሻ ∙ 𝑉

௠ሺ𝑥௜ሻ (3) 

Where: 

𝑍ଶெ஼஼௄ሺ𝑥௜ሻ  is a simple multicollocated co-kriging estimator 

𝜎ଶ
ଶ
ெ஼஼௄ሺ𝑥௜ሻ  is the corresponding estimation variance. 

7. Loop to re-simulate all values identified in step 3. 

8. Store re-simulated values in 𝑍ଶ
௡ሺ𝑥௜ሻ. 

9. Back transform simulated values of the primary and secondary variables into the original scale 
𝑌ଵ
௡ and 𝑌ଶ

௡.  

Two-stage stochastic long-term production scheduling 
This study implements two-stage stochastic production scheduling that employs average information 
from e-type models into the first stage, while the second stage decisions are based on geostatistical 
realisations. Production periods are computed in the first stage and are fixed for all realisations. 
Alternatively, second stage decisions focus on the re-evaluation of block destinations depending on 
mineral grades simulated by stochastic geostatistical methods. Integration of uncertainty into the 
second stage minimises the risk of sending the extracted material to the wrong destinations. The 
workflow of the proposed production scheduling methodology is the following: 

1. Obtain economic block values 𝐸𝐵𝑉ሺ𝑥௜ሻ for e-type models and geostatistical realisations 
accounting on the impurity content of ore as follows: 

 𝐸𝐵𝑉ఈ ൌ max ሺሺ𝑃 െ 𝐶ௌሻ ∙ 𝑅 ∙ 𝑇𝑂𝑁ఈ ∗ 𝑌ଵఈ െ ሺ𝐶ெ ൅ 𝐶௉ሻ ∙ 𝑇𝑂𝑁ఈ െ ሺ𝑌ଶఈ
൐ 𝑌ଶ

்ுሻ ∙ 𝐶ூ ∙ ሺ𝑌ଶఈ െ 𝑌ଶ
்ுሻ ∙ 𝑇𝑂𝑁ఈ ,െ𝐶ெ ∙ 𝑇𝑂𝑁ఈ 

(4) 

Where: 

P  is a metal price 

𝐶ௌ  is a selling cost 

𝑅  is a recovery rate 



Iron Ore Conference 2021 | Perth, Western Australia | 8–10 November 2021 534 

𝐶ெ  is a mining cost 

𝐶௉  is a processing cost 

𝑇𝑂𝑁ఈ  is a total tonnage for block 𝛼 

𝐶ூ  is cost associated with an impurity content 

𝑌ଶ
்ு  is a threshold of the secondary variable, below which no impurity-related cost is 

applied.  

2. Compute ultimate pit limit (UPL) and nested pits from e-type models using a pseudoflow 
algorithm (Hochbaum, 2008). 

3. Define grade blending, mining, processing, reserve and operational constraints for the MIP. 

4. Define pushbacks by grouping nested pits from a deterministic model and then selecting 
groups with similar tonnages. 

5. First stage decisions: Compute production periods from e-type models using MIP with the 
following formulations: 

 max∑
ா஻௏ഀ ഓ

ሺଵାௗሻഓ
∙ 𝑋ఈఛ௣∈௉   (5) 

 ∑ 𝑋ఈఛ ൌ 1ఈ∈஺  ∀ α ∈ A, τ ∈ T (6) 

 ∑ ൫𝑌ଵఈ െ 𝑌ଵ
்ு൯ ∙ 𝑂𝑇𝑂𝑁ఈ ∙ 𝑋ఈఛఈ∈஺ ൒ 0 ∀ α ∈ A, τ ∈ T (7) 

 ∑ 𝑇𝑂𝑁ఈ ∙ 𝑋ఈఛఈ∈஺ ൑ 𝐶𝐴𝑃ெ
௠௔௫ ∀ α ∈ A, τ ∈ T (8) 

 ∑ 𝑂𝑇𝑂𝑁ఈ ∙ 𝑋ఈఛఈ∈஺ ൑ 𝐶𝐴𝑃௉
௠௔௫ ∀ α ∈ A, τ ∈ T (9) 

Where: 

𝑑  is a discount rate 

α ∈ A  is a set of blocks 

τ ∈ T  is set of production periods 

𝑋ఈఛ  is an integer variable that is equal to 1 if a block 𝛼 is extracted in a period 𝜏 and 
0 if not 

𝑌ଵఈ  is the primary variable 

𝑌ଵ
்ு  is a minimum threshold of the primary variable 

𝑂𝑇𝑂𝑁ఈ  is an ore tonnage 

𝐶𝐴𝑃ெ
௠௔௫ and 𝐶𝐴𝑃௉

௠௔௫ are maximum thresholds of mining and capacities 

Equation 6  is a reserve constraint 

Equation 7  is a grade blending constraint 

Equations 8–9 are mining and processing capacity constraints.  

6. Re-evaluate tonnages 𝑇𝑂𝑁ఈ௡ and economic block values 𝐸𝐵𝑉ఈ௡ based on 𝑛 geostatistical 
realisations. 

7. Second stage decisions: Re-evaluate the block destinations 𝐵𝐷ఈ௡ using grades from 
geostatistical realisations. 

CASE STUDY 
Proposed geostatistical and production scheduling methodologies are tested on a real data set from 
an iron deposit, which was multiplied by a scale factor to preserve confidentiality. The data set is 
homotopic and consists of 2137 sample points with coregionalised iron and silica variables. 
Figure 1a shows the location map of the data set used in this study. A critical feature of this deposit 
is a sharp inequality constraint between iron and silica (Figure 1b). Inequality constraint has a slope 
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𝑎 of -1.465 and an intercept 𝑏 of 70.316, meaning that linear inequation for the proposed cosimulation 
algorithm is as follows: 

 𝑆𝑖𝑙𝑖𝑐𝑎 ൑ 70.316 െ 1.465 ∙ 𝐼𝑟𝑜𝑛 (10) 

Furthermore, considering that the sampling pattern is slightly irregular (ie samples are mostly taken 
from the central part), cell-declustering is performed with 50 m × 50 m × 10 m cell dimension 
(Deutsch, 1989). Table 1 provides declustered statistical parameters of this deposit. Aside from an 
apparent inequality constraint, the correlation coefficient between variables is high. Therefore, 
conventional cosimulation is not likely to produce a significant overestimation of silica. 

 

FIG 1 – (a) Location maps of iron and silica; and (b) a scatter plot between variables with a black 
line representing an inequality constraint. 

TABLE 1 

Basic declustered statistical parameters. 

Statistical parameter Iron (%) Silica (%) 

Mean 37.54 11.96 

Variance 42.90 96.04 

Correlation coefficient -0.95 

Cosimulation of grade variables 
In order to provide unbiased results for this case study, 100 realisations are produced using the 
proposed hierarchical cosimulation. The grid dimension of a single mining block is 20 m × 20 m × 10, 
which is used for both geostatistical modelling and production scheduling. Before proceeding to the 
cosimulation process, variables are transformed into normal scores. Then, direct and cross-
variograms are calculated in the horizontal and vertical directions after examining an anisotropy. 
Finally, the following two-structured linear model of coregionalisation is obtained using a manual 
fitting: 
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൰𝐸𝑥𝑝ሺ180𝑚, 180𝑚, 120𝑚ሻ 

(11) 

Figure 2 demonstrates e-type models, in which all blocks contain average grades of iron and silica 
over 100 realisations. Overall, results are compatible with location maps of original borehole data 
(see Figure 1a). The central part of the deposit contains high-grade iron and low-grade silica, 
meaning that a negative correlation between variables is reproduced. In fact, the simulated 
correlation coefficient between iron and silica is -0.93. Moreover, the average grades over 100 
realisations are 36.50 per cent for iron and 11.06 per cent for silica, meaning that results are close 
to the original declustered parameters. 

 

FIG 2 – E-type models over 100 realisations of iron (top) and silica (bottom). 

It is of interest to compare the results with models obtained by the conventional methodology. The 
only difference between the two algorithms is the integration of an inverse transform sampling into 
the proposed method. Since an inverse transform sampling is implemented on the values computed 
during the second simulation, iron realisations are identical in both methods. However, the 
conventional method slightly overestimates silica that has an average grade of 13.40 per cent. 
Furthermore, the average correlation coefficient in realisations produced by the conventional method 
is -0.91. Although differences are not critical, it is better to analyse the bivariate relationships. 
Figure 3 shows how scatter plots between iron and silica are reproduced by two methodologies in 
realisation No. 1. Simulated bivariate relationships between variables and their marginal distributions 
are compared to the original parameters in Figure 3a. It should also be mentioned that scatter plots 
from block models are subsampled to show only 3000 random block values for a more valid 
comparison. Inverse transform sampling helps to reproduce an inequality constraint perfectly (see 
Figure 3c), while conventional methodology predictably fails to model this feature (see Figure 3b). 
Traditional Gaussian-based cosimulation methodologies model the bivariate relationships between 
coregionalised variables using only their cross-correlation structure. Inverse transform sampling in 
the proposed algorithm acts as an additional restriction that re-simulates all faulty values to 
reproduce an inequality constraint. Therefore, the conventional method can show much worse 
results in deposits with a lower cross-correlation and more skewed marginal distributions (Abulkhair 
and Madani, 2021).  
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Another important detail is that the histogram validation of silica realisations demonstrates that the 
re-simulation of silica values does not negatively affect its marginal distribution. This is because the 
proposed algorithm only re-simulates values that lie outside the threshold defined by inequation. On 
the contrary, silica’s histogram from the proposed method has a closer resemblance to the original 
marginal distribution thanks to the re-simulation of overestimated values. 

 

FIG 3 – The bivariate relationship between iron and silica with their corresponding marginal 
distributions obtained from the original data set (a) and 3000 randomly selected block values from 

realisation No. 1 simulated by conventional (b) and proposed (c) algorithms. 

Production scheduling 
This study analyses the performance of hierarchical cosimulation integrated with inverse transform 
sampling and two-stage stochastic production scheduling. In that regard, production scheduling 
results produced by the proposed stochastic strategy are compared to the upper and lower bounds. 
The upper bound is an optimistic and impossible strategy that shows the best NPV for each 
realisation. It is computed using MIP on each realisation individually. The lower bound is a 
deterministic strategy obtained from e-type models of iron and silica. It is an inefficient solution 
because it involves the risk of sending an extracted material to the wrong destinations. For example, 
if a block is considered as ore in an e-type model but turns out to be waste, both mining and 
processing costs are applied to this block. Table 2 lists parameters used for long-term production 
scheduling. This set of parameters is conceptual and not chosen for this particular deposit, and its 
objective is to provide the same environment for a fair comparison of the three strategies. Finally, 
three pushbacks are selected based on the deterministic case after grouping pits and ensuring that 
each group has a similar tonnage.  

TABLE 2 

Parameters for production scheduling. 

Price ($/ton) 80.0 Penalisation ($/ton) 1.5 Mining capacity 
(ton/day) 

153 000 

Mining cost ($/ton) 3.0 Iron threshold (%) 30.0 Processing 
capacity (ton/day) 

130 000 

Processing cost ($/ton) 10.5 Silica threshold (%) 5.0 Slope angle 50° 

Selling cost ($/ton) 30.0 Recovery rate 0.8 # pushbacks 3 
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In the proposed mine planning solution, pit limits are identified based on e-type values. As a result, 
the deposit is planned to produce 457 Mton of ore and 69 Mton of waste. Alternatively, the upper 
bound strategy demonstrates an average of 476 Mton of ore and 49 Mton of waste. Thus, the 
proposed solution produces a lower amount of ore and a higher amount of waste than the upper 
bound, which individually implements MIP on each realisation. This can also be observed in ore and 
waste tonnages for each production period from the proposed solution (Figure 4c). Both parameters 
are consistent throughout the life-of-mine, while 95 per cent confidence intervals show fair 
deviations. However, ore tonnages do not reach the full processing capacity of 47.45 Mton/a, unlike 
the upper bound (Figure 4a) during the first eight years of production. Furthermore, NPV results after 
each production period calculated with a discount rate of 10 per cent show consistent growth, and 
the final NPV is between $458M and $616M based on a 95 per cent confidence interval. On the 
other hand, the NPV of the lower bound (Figure 4b) is significantly lower, resulting from sending 
waste material to the processing plant. 

 

FIG 4 – NPV and tonnage values during each production period with 95 per cent confidence 
intervals for NPV (blue) and ore tonnage (orange) of the upper bound (a), lower bound (b) and 

proposed strategy. 

NPV results produced by the two-stage stochastic production scheduling are compared to the upper 
and lower bounds. The average NPV of the upper bound is around $653M, which is the best NPV 
for this deposit that is impossible to achieve. On the other hand, the lower bound (ie deterministic 
case) produces only $154M because of losses related to sending waste material to the processing 
plant. And $537M is reported in the proposed solution. Furthermore, even the worst scenario from 
the proposed strategy with $443M NPV is considerably better than the best scenario of the lower 
bound with $389M. 

Figure 5 shows plots with NPV for 100 realisations for the proposed mine planning solution, upper 
and lower bounds, which are normalised to the reference plot of the upper bound (ie 100  per cent). 
By doing so, deviations from the best possible NPV for each realisation can be analysed. The 
average plot for the proposed solution is at 83 per cent and the lower bound – 24 per cent. Therefore, 
the NPV of the proposed solution is 17 per cent lower than the upper bound and 59 per cent higher 
than the lower bound on average.  
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FIG 5 – NPV of the proposed production scheduling strategy compared to the upper and lower 
bounds for 100 realisations. Plots are normalised to the upper bound (reference case) and dashed 

lines represent average deviations from the reference plot. 

The final analysis is the investigation of the effect of inequality constraint reproduction. Inverse 
transform sampling prevents the overestimation of silica and increases the economic block values 
by reducing the cost associated with an impurity content. As a result, optimal pit limits produced 
using realisations from the proposed cosimulation algorithm contain more profitable blocks. 
Therefore, NPV increases by 0.76 per cent (Figure 6a) and ore tonnage – by 1.78 per cent 
(Figure 6b) in comparison to the conventional cosimulation. The absolute benefits from the proposed 
cosimulation algorithm are 8.39 Mton of ore and $4.08M NPV. 

 

FIG 6 – Histograms of the increase in NPV (a) and ore tonnage (b) in 100 realisations of 
production scheduling by using the proposed cosimulation algorithm over the conventional one. 

CONCLUSIONS 
This study shows the economic benefits from inequality constraint reproduction using a case study 
from an iron deposit composed of iron and silica grades. Poor reproduction of an inequality constraint 
by the conventional cosimulation methodology leads to an overestimation of silica, which in turn 
increases losses associated with the impurity content of mined ore. Additionally, although traditional 
mine planning approaches can maximise NPV, they are unable to manage the risks considering that 
only a single block model is commonly used as an input. On the other hand, stochastic long-term 
mine planning approaches generate production schedules with maximised NPV and minimised risks 
of not meeting production targets. 

Iron and silica variables are modelled by the proposed hierarchical cosimulation, which is equipped 
with an inverse transform sampling to re-simulate faulty values within thresholds from an inequality 
constraint. Unlike the conventional cosimulation, the proposed methodology perfectly reproduces an 
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inequality constraint, shows better reproduction of silica histogram and produces a higher correlation 
coefficient between variables. 

Two-stage stochastic production scheduling is proposed to introduce grade uncertainty into mine 
planning. In this study, first stage decisions obtain fixed production periods using average information 
from e-type models. Second stage decisions adapt the strategy to multiple unbiased geostatistical 
scenarios by re-evaluating block destinations. Adaptive block destinations help to minimise the risk 
of sending an actual waste to a processing plant or valuable ore material to a waste dump. Results 
are compared with the upper and lower bounds, in which the former is the highest NPV strategy that 
is also impossible to achieve and the latter is the deterministic strategy. The difference between the 
upper bound and the proposed solution is 17 per cent, while the lower bound is 59 per cent lower 
than the proposed solution. Furthermore, the reproduction of an inequality constraint increases NPV 
by 0.76 per cent or $4.08M. 

It is recommended to apply the proposed methods to other data sets with inequality constraints 
between two variables. The NPV benefit from reproducing an inequality constraint can be higher 
when the overestimation of a disturbing element is more substantial. Moreover, the proposed 
methodology can also be improved by incorporating lithology modelling. For this, the contact analysis 
can be considered prior to the co-simulation process.  
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