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We propose a two-stage production scheduling model for open pit mine planning under geological 
uncertainty that considers different conditional simulations of a mineral deposit, based on the 
information from drill holes. In a first stage, the scheduling decision is taken, assigning an 
extraction period of each region (block, bench-phase or similar) of the deposit. In a second stage, 
when the true ore grade is revealed, the model decides how to treat each individual block in that 
region. Our proposed integer-programming model can be reformulated as a large-scale precedence 
constrained knapsack problem that can be (near-optimally) solved using decomposition 
techniques. This approach allows us to solve real instances of the problem in a few hours.  
We apply this model to a copper deposit in Chile, using different number of drill holes to generate 
scenarios. We compare the resulting NPV from the deterministic solution, the best-possible plan 
for each scenario, and our proposed model. Computational experiments show that, in these data, 
the proposed two-stage stochastic model produces more robust mine plans, with an improvement 
on the obtained NPV of 4% to 7% for scenarios with high geological uncertainty.  

 
Introduction 
The central concern of strategic mine planning is to construct a tentative life-of-mine production schedule specifying 
which part of a mineral deposit should be extracted, and when and how it should be extracted to maximize value and 
satisfy operational constraints. In early stages of a mining endeavor, such a plan serves to anticipate the cash flows 
of a project (capacity investments and production goals) and, thus, is critical to investors. Because early decisions 
are binding and, hence, critical to long-term profits, it is widely acknowledged that, of all stages in the life of a 
mining project, strategic planning most significantly impacts final profits.  
 
Strategic mine planning is a complex optimization problem made daunting by geological uncertainty (distribution of 
mineral resources over space), and the scale of practical problems (amount of data and number of decisions 
involved). The tasks of creating a production schedule and modeling the inherent uncertainty are extremely 
challenging on their own.  
 
Mine planning methodologies developed to date by industry and academia fail to address both the concern of scale 
and uncertainty. Current methods assume that the values of geological variables are known, and risk management is 
limited to analyzing different settings of these values (scenarios) through trial and error. Moreover, current models 
do not consider that agents change their decisions over time as uncertainty unfolds, resulting in conservative 
solutions.  
 
Multistage stochastic models are ideal for settings in which decisions can be updated over time as information is 
progressively revealed. The most common approach to date typically assumes that strategic decisions made at the 
beginning of a planning period are binding and cannot be changed as scenarios are revealed (i.e. no recourse; see 
[1], and [2]). This can result in very conservative solutions (see [3] and [4] for discussions). Current methods 
typically use expected values of net present values (NPV), assuming decision makers are risk neutral [5]. Other 
methods use heuristics to find feasible solutions of simple stochastic models [6][7]. Multistage stochastic models for 
mine planning have been proposed by [8] and [9]. While these works incorporate some desirable features - such as 
modeling endogenous geological uncertainty in the former, and risk metrics for price uncertainty in the latter - they 
do not address the issue of scalability (e.g., via decomposition), and as a result they can only deal with relatively 
small problems.   
 



In this paper, we propose a two-stage stochastic model for the problem. In a first stage, the scheduling decision is 
taken, assigning an extraction period of each region (block, bench-phase or similar) of the mine. In a second stage, 
when the true ore grade is revealed, the model decides how to treat each individual block in that region. An 
important feature of this model is that it is scalable, and can be solved to near-optimality even for large-scale 
instances with several scenarios.  
 
Optimization models for mine planning 
In the last decade, several works have shown that it is possible to formulate and solve a (deterministic) production-
scheduling problem using mixed-integer programing models (MIP). In this section we discuss a generic 
deterministic model, which allows us to introduce the notation utilized in this work. 
 
Usually, two types of variables are used in MIP models: variables xct indicating that a “cluster” of blocks c is 
extracted at time t. A cluster of blocks can be a single block, a mining-block, a bench-phase, or any other 
aggregation of blocks that should be extracted simultaneously. The second type of variable yb,d,t indicates the 
fraction of each block b that is sent to destination d at time t. Using these two types of variables, we can formulate a 
generic MIP model for the problem as following: 
 

	
	

The objective function consider the profit pb,d of each block sent to destination d, and the cost cc of extracting cluster 
c. Additionally, a discount factor δt is applied to the objective to compute the net present value (NPV) of the project.  
 
Constraints (1) link the extraction and processing decision, indicating that all blocks in each extracted cluster should 
be sent to a destination in the same proportion. Constraints (2) and (3) represent capacity constraints of a recourse r 
over the extraction and processing decision, respectively. Additional arbitrary constraints can be added in (4). 
Finally, the constraint x ∈ Ω in (5) imposes operational constraints over the extraction decisions of clusters. For 
example, if cluster are individual blocks, then Ω should include pit-slope precedence constraints. If cluster are 
bench-phases, then Ω should include precedence constraints between different phases and benches. Ω also includes 
the integrality constraints over extraction variables. 
 
 
A two-stage optimization model for geological uncertainty 
To consider the geological uncertainty of the block model in the mine-planning problem, we propose what is known 
as a two-stage stochastic model.  In a two-stage stochastic model, a set of decisions is taken (first stage) without 
knowing the real value of the random parameters. After executing this first stage, the real value of these parameters 
is revealed, and recourse decisions (second stage variables) are taken. The model should consider all possible second 
stage scenarios in order to decide the optimal first stage decisions. 
 
In the case of open-pit production scheduling, the first stage decisions correspond to the extraction decisions (xct 
variables), which should be taken considering the geological uncertainty of the deposit. After extracting a set of 
blocks, the true grades and other parameters of the extracted blocks are revealed, so the processing decisions (yb,d,t 
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variables) correspond to the second stage decisions. Hence, for the generic problem presented in the previous 
section, we assume that the uncertainty affects the profit pb,d(ξ) or the resources wr’

b,d(ξ) of each block. Hence, our 
two-stage stochastic model is given by the following problem: 
 

	
	

which includes the extraction decisions and its resources and operational constraints. The objective function includes 
the expected value of the second stage, which is given by the processing decisions and its corresponding constraints. 
This second stage problem, which depends on the first stage decisions x and a random component ξ, is given by the 
subproblem:  
 

 
 
Since in practice, there are not known probabilistic distribution for the grades and resources, we need to rely in an 
approximation of the expected value, by using simulations of the mineral deposit.  This technique, known as Sample 
Average Approximation [10], allows approximating the expected value of the second stage E(Q(x, ξ )) by an average 
of the value of these subproblems Q(x, ξs) over a set of sampled scenarios S. Note that in this case, the processing 
decisions (yb,d,t variables) will depend on the scenario that is considered. Hence, we can add an additional subindex 
to the y variables and rewrite the complete problem into the following model: 
 

 
 
where pb,d,s and wb,d,s correspond to the value of these random parameters in the scenario s.  
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This model multiplies the number of y variables and constraints (1), (3) and (4) of the deterministic model by the 
number of scenarios. However, it is still possible to reformulate this problem to convert it into a General Precedence 
Constrained Problem, suitable to be solved using the BZ algorithm [11].  
 
 
Computational Experiment 
We evaluate the potential of using a two-stage stochastic model over a real copper deposit located in northern Chile. 
We use the information from drill holes to generate two sets of 50 scenarios by conditional simulations using the 
turning bands algorithm [12].  A first set was generated using 76 drill holes, obtaining scenarios with high 
uncertainty. The second set has been generated using 753 drill holes, so the resulting scenarios have a lower 
uncertainty. The economic parameters of the mine are presented in Table 1. The constraints of the problem are a 
maximum mining and processing capacity for every period.   
 
Copper price 2.1 US$/lb Recovery  85% # blocks in ult. pit 145,858 
Mine cost 2.5 US$/ton Mining capacity 43.8 Mton/year # phases 4 
Cost Flotation 10 US$/ton Plant capacity 23.725 Mton/year # benches 30 
Cost R&F 0.25 US$/lb Discount factor 10% # bench-phases 117 
 

Table 1: Parameters of the mine instance utilized 
 
We solve two type of problems. The first problem (named “block-level scheduling”) schedules individual blocks 
along the time, subject to slope constraints. Hence, cluster set C corresponds to individual blocks and the set Ω 
includes slope-precedence constraints and binary constraints for the variables x. The second problem (named 
“Bench-phase scheduling”) uses a predefined set of four phases computed using Whittle’s Milawa Balanced 
algorithm, so the set of clusters C corresponds to the bench-phases of the mines, and the set Ω includes the usual 
constraints between bench-phases.  
 
For each problem, and for each set of scenarios, we benchmark the results of three different approaches. The first 
approach is the stochastic model presented in the previous section, considering the 50 available scenarios. Recall 
that this model returns a unique extraction sequence given by x variables, and a different policy for processing 
blocks on each scenario (given by y variables). The second approach is the usual deterministic approach, where a 
unique block model is obtained by averaging 50 scenarios, and solved using the deterministic MIP formulation. 
However, in order to do a fair comparison with the stochastic model, we evaluate the extraction sequence obtained 
by the deterministic model, allowing to change the processing decisions in each scenario. Finally, our third 
approach, named “Cristal Ball”, consists in solving the deterministic model for each scenario individually. Note that 
this approach produces a different extraction sequence for each one of the 50 scenarios, so it cannot be used in 
practice. However, it provides an upper bound on the best possible NPV that can be obtained in each scenario. For 
each approach, and in order to avoid numerical misinterpretations, we present the optimal NPV value of its linear 
relaxation, which is obtained using a modified version of the Bienstock-Zuckerberg algorithm [11]. However, for 
each case an integer solution with an integrality gap smaller than 1% can be obtained. 
 
 
 
 



 
Figure 1: NPV obtained by each approach at block-level scheduling. Left: case when 76 drill holes are available. 

Right: case when 753 drill holes are available. 

 
Figure 2: NPV obtained by each approach at bench-phase scheduling. Left: case when 76 drill holes are available. 

Right: case when 753 drill holes are available 
 
 
Figure 1 and 2 show the NPV obtained by each approach on the scenarios with high uncertainty (left) and low 
uncertainty (right) when we schedule blocks and bench-phases, respectively.  
 
Note that the resulting NPV of the stochastic and the deterministic models with scenarios of low uncertainty (right 
side of Figures 1 and 2) are very similar, obtaining almost the same profit on each scenario. This is an expected 
behavior, that shows that with low uncertainty the deterministic model is near-optimal, so the stochastic model 
cannot do anything better. Interestingly, the stochastic model is not worse than the deterministic model for any 
scenario, which is an unexpected result that shows that the use of the stochastic model even for low uncertainty 
scenarios is still recommended. 
 
On scenarios with high uncertainty, the stochastic model shows a higher benefit. In average, the profit obtained by 
the stochastic model is 6.47% and 4.69% higher than the determinist model for blocks-level and bench-phase 
scheduling, respectively. Moreover, the stochastic model captures most of the uncertainty of the problem. In fact, for 
the block-level scheduling, the stochastic model captures between a 40% to 68% of the difference between the NPV 
of the deterministic model and the best-possible NPV for each scenario. Results of the stochastic model are even 
better for the bench-phase scheduling, where the stochastic model is very similar to the best possible solution on 
each scenario. In fact, the difference between the NPV of the stochastic model and the best possible solution is less 
than 0.71%, with an average of 0.06%.  
 
In Figure 3 we compare the tonnage movement and the average profit per ton at the plant for the stochastic and 
deterministic solutions for bench-phase scheduling, in the scenarios 20 and 30 of high uncertainty, where the best 
and worst NPV for this problem are obtained. Note that the stochastic solution uses the complete mining capacity, 
extracting the mine in 9 periods. In contrast, the deterministic solution does not use the complete mining capacity, 
requiring one more period. The deterministic solution has this extraction sequence because in the average scenario it 
could use the 100% of the plant capacity. However, we can see that even for the best scenario, the deterministic 
solution does not have sufficient ore to use the full plant capacity. In fact, deterministic solution utilizes 85.8% and 
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76.2% of the plant capacity for the best and worst scenario, respectively.  On the other hand, the stochastic solution 
extracts more material per period, having more available ore to be sent to the plant, which gives more flexibility. 
This can be seen in the use of the plant capacity, which is a 92.0% and 84.5% for the best and worst scenario, 
respectively. For the same reason, the average grade of the material sent to the plant is higher for the stochastic 
solution, obtaining an NPV 4.6% and 4.2% better than the deterministic solution for the best and worst scenario, 
respectively. 
 

 

 
Figure 3: Bench-phase scheduling for the best (#30) and the worst (#20) scenario of high uncertainty. 

 
Finally, in order to provide a more realistic use of this model in the industry, we compare the schedule obtained by 
the deterministic and stochastic models for scenarios with high uncertainty, but we evaluate them over the scenarios 
with low uncertainty. The resulting NPV are presented in Figure 4, for both block-level (left) and bench-phase 
(right) cases. We also include the Cristal ball solution for low uncertainty scenarios, to show the best possible NPV 
that can be obtained in each case. Figure 4 shows that the stochastic solution is very close to the best possible 
solution in both cases. For the block-level scheduling, the stochastic solution has an expected NPV 6.47% higher 
than the deterministic solution, and 4.62% lower than the average NPV of the best possible solution for each 
scenario.  For the bench-phase scheduling, the stochastic solution and the best possible solutions have basically the 
same average NPV, which is 3.8% better than the deterministic solution. 
 

 
Figure 4: NPV of the solution for block-level (left) and bench-phases (right) scheduling for the case when 76 drill 

holes are available, but evaluated in the scenarios when 753 drill holes are available.  
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Conclusions 
We presented a stochastic optimization model for mine planning problems that consider the geological uncertainty 
of the mineral deposit. The proposed model provides an extraction sequence for all periods, and the processing 
decisions are taken knowing the true grade of the extracted material. The model is also scalable, being able to solve 
an instance with hundreds of thousands blocks and 50 scenarios using state-of-art decomposition methods. We also 
benchmarked the stochastic solutions with the classical deterministic approach and the best-possible solution for 
each scenario. The stochastic solution shows a considerable improvement in the NPV over the deterministic 
solution, and very close to the best possible NPV that can be obtained.  
The proposed stochastic model is sufficiently general, and can be applied to more complex problems with different 
constraints and objectives. For example, further studies can be done introducing a stockpile (like in [13]) to the 
stochastic model or incorporating production targets  
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