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Abstract Mine operations are supported by a short-term production
schedule, which defines where and when mining activities are performed.
However, deviations can be observed in this short-term production schedule
because of several sources of uncertainty and their inherent complexity.
Therefore, schedules that are more likely to be reproduced in reality should
be generated so that they will have a high adherence when executed.
Unfortunately, prior estimation of the schedule adherence is difficult.
To overcome this problem, we propose a generic simulation-optimization
framework to generate short-term production schedules for improving the
schedule adherence using an iterative approach. In each iteration of this
framework, a short-term schedule is generated using a mixed-integer linear
programming model that is simulated later using a discrete-event simulation
model. As a case study, we apply this approach to a real Bench & Fill
mine, wherein we measure the discrepancies among the level of movement
of material with respect to the schedule obtained from the optimization model
and the average of the simulated schedule using the mine schedule material’s
adherence index. The values of this index decreased with the iterations, from
13.1% in the first iteration to 4.8% in the last iteration. This improvement
is explained because the effects of the operational uncertainty within the
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optimization model can be considered by integrating the simulation. As a
conclusion, the proposed framework increases the adherence of the short-term
schedules generated over iterations. Moreover, these increases in the adherence
of schedules are not obtained at the expense of the Net Present Value.

Keywords Short-term mine production scheduling ·
simulation-optimization · mine operation simulation

1 Introduction

Mine planning is the discipline of mining engineering that transforms the
mineral resource into the most profitable business for the owner. The
scheduling sequence of mining operations is usually divided into strategic
(long-term), tactical (medium-term), and operational (short-term) levels
(L’Heureux et al, 2013). Strategic scheduling defines the portions of the ore
body that can be extracted, the life of the mine, the production rate, and
the amount of investment. A long-term mine production schedule defines the
portions of waste and ore that can be mined from the ore body every year.
This schedule seeks to maximize the net present value (NPV) over the life
of the mine. Tactical scheduling determines the mining sequence for up to a
period of five years based on the constraints with respect to the production
rate. Finally, operational scheduling seeks to ensure the operational feasibility
of the long-term mine production schedule (Smith, 1998). In this study, we
focus on short-term scheduling. The scope of interest in case of a short-term
schedule spans from several weeks to months, typically not more than one to
two years (Blom et al, 2018). Therefore, this study focuses on scheduling with
respect to schedule spans of no more than one and a half years.

One of the challenges encountered by mine planners is the consideration of
different types of uncertainty (geological, market, and operational) during the
generation of long- and short-term mine production schedules. The short-term
mine production schedules aim to achieve the movement of a material that
was previously defined using the long-term mine production schedule. One
particular problem is the consideration of operational uncertainty during the
process of generating short-term mine production schedules. These schedules
should consider in detail how to execute all the mining activities in a mine
operation to achieve the required production rates. All the mining activities
are performed using specific mining equipment. These activities should be
conducted in accordance with the precedence of mining activities, which is the
sequential order in which the activities must be completed.

The efficiency of the mining equipment is related to the achievement of the
objectives of a short-term schedule, measured based on the key performance
indicators (KPIs). For each piece of equipment, mine operations use the
following KPIs to measure the level of efficiency: availability and utilization.
Availability is the fraction of the total time during which the equipment is
ready to be used, i.e., it is not under maintenance or being repaired. However,
utilization is the fraction of the total time during which the equipment
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performs the task for which it was designed. For example, during a period
of 24 h, a shovel could undergo maintenance for 4 h; hence, its availability
can be deduced as 20/24 = 0.83 (83%). Further, during the remaining 20 h,
the shovel may have spent only 12 h loading trucks (the remaining time is
spent on various activities, e.g., waiting for trucks, during shift changes, or
during lunch). In this case, the utilization of the shovel can be deduced as
12/24 = 0.5 (50%). Other KPIs can be utilized with respect to equipment for
various activities such as to differentiate between the utilization losses in case
of scheduled and random events; however, only availability and utilization will
be considered in this study.

A deviation from a mine production schedule corresponds to any difference
between this schedule and its execution, including differences with respect
to the movement of material, the ore sent to the ore processing plant, or
the grade of the ore sent to the ore processing plant. Unfortunately, the
complexity and uncertainty of mine operation result in deviations from the
short-term schedules (Upadhyay and Askari-Nasab, 2017). The uncertainties
include (i) market uncertainty, which is related with the unknown future
commodity prices, (ii) geological uncertainty, which is associated with the
unknown characteristics of the deposit in terms of the grades, rock types,
and mineralization, and (iii) operational uncertainty, which is related with the
unknown characteristics of the behavior of the mining operation associated
with the mining equipment. The operational uncertainty is the main focus
of this study. The relevance of deviations with respect to the short-term
production schedules is crucial in the mining industry. According to Upadhyay
and Askari-Nasab (2018), the deviations in short-term mining schedules
increase the difficulty associated with achieving the objectives defined by
long-term schedules. Adherence is a concept that quantifies the deviations
in a short-term production schedule and its execution. More precisely, the
adherence of a mine production schedule corresponds to its capability to be
reproduced in reality. Unfortunately, the adherence of a mine schedule is not
usually assessed before its execution. This could result in the implementation
of schedules whose objectives are difficult or even impossible to accomplish.
The application of discrete-event simulation (DES) is an approach to evaluate
the adherence of a short-term schedule before its execution. This approach
simulates a given short-term schedule by considering all the operational
uncertainties associated with mine operation.

Further, we incorporate the operational uncertainty associated with the
operational parameters of the equipment (velocities, capacities, maneuver
times, failures times, and maintenance times), which are modeled using
the probability density functions based on the historical data. DES has
been extensively applied to the model mine operations in which the
deterministic models failed to accurately predict the uncertain behavior
(Upadhyay and Askari-Nasab, 2017). This approach is extensively used to
assess the performance of mine operations because it helps to incorporate the
inherent variability and complexity of operational uncertainty (Torkamani and
Askari-Nassab, 2015).
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Based on the evaluation of the adherence to short-term production
schedules using DES, it is desirable to generate short-term production
schedules exhibiting high adherence. Mathematical optimization is a useful
tool to generate production schedules in both open-pit mining and
underground mining. In the case of short-term underground mine scheduling,
mixed-integer linear programming (MILP) is generally considered in which the
binary variables address long-term block-extraction decisions and continuous
variables address the related short-term decisions of how much ore should be
extracted from a block (Newman et al, 2010). A review of the optimization
techniques applied to underground mines can be found in Musingwini (2016).

In the case of mathematical optimization in open-pit mines, an excellent
review of short-term production scheduling can be observed in Blom et al
(2018).

One common approach for optimization under uncertainty is the utilization
of stochastic programming, which allows optimization problems with respect to
the random variable parameters in the goal function or constraints to be solved
(see Birge and Louveaux (2011) for details about stochastic programming).
However, the problem that we address in this study, such an approach would
be very difficult to implement and most likely impractical to use because the
KPIs are not only random but depend upon the schedule; conversely, the
feasibility of a schedule is highly dependent on KPIs.

Therefore, we propose a framework that combines a deterministic
optimization model with DES. In this framework, the optimization part
of the framework generates short-term mine production schedules, whereas
the simulation part evaluates these schedules and provides useful feedback
to generate a new and better schedule in future iterations. Therefore, the
contributions of the paper are (i) the development of a simulation-optimization
framework to generate short-term mine production schedules, (ii) providing
a set of indicators to measure the adherence to a schedule, and (iii)
the application of the proposed framework to a specific case in which a
mathematical model, a DES model, and the mechanisms to integrate them
are implemented to denote that the proposed methodology provides schedules
with high adherence using an iterative approach.

Section 2 provides a review of the related work associated with this study.
Section 3 provides a complete description of the proposed framework, Section
4 introduces several adherence indices used to quantify the adherence of
a schedule and its corresponding simulation, and Section 5 describes the
application of the proposed framework to a Bench and Fill (B&F) mine
operation by introducing the optimization model used to generate short-term
mine production schedules and the simulation model developed to simulate
them. In Section 6, we apply the proposed framework to a real-world data
of a B&F mine. Section 7 reports and discusses the results of the case study.
Finally, Section 8 concludes the present study and outlines future work.
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2 Related work

In this section, we provide a brief review of the literature with respect to
simulation and optimization using some combination of both techniques. We
initially review the simulation-optimization framework, which deals with the
optimization of the simulation process. Further, we review the studies that
combine simulation in case of discrete events with optimization in the mining
industry.

2.1 Simulation-optimization

Simulation-optimization attempts to optimize a simulation model. The
primary objective is to estimate the values of controllable parameters that
can result in the optimization of a performance function from a simulation
model. Chen et al (2008a) reviewed three approaches to address the
simulation-optimization problem in a general engineering setting:

1. The efficient simulation budget approach (Chen et al, 1997, 2000; Chick and
Inoue, 2001a,b; Lee et al, 2004; Chen and Yücesan, 2005; Kim and Nelson,
2006; Fu et al, 2007; Chen et al, 2008b) intends to select the optimum
simulation design from a set of scenarios provided in advance, which differs
from the approach used in this study because we enumerate schedules as
a result of an iterative process, i.e., they are not predefined by the user.

2. The nested partitions method is an approach that can be used to solve
global optimization problems, which requires partitioning of the region
into subregions. Each subregion is evaluated using sampling, and the most
promising subregion is used for the subsequent iteration or the method
backtracks to a larger region if each subregion is worse than the incumbent
region (Chen et al, 2008a). Therefore, this approach is different from that
proposed in this study because we do not consider such a hierarchical
structure defined with respect to the schedules.

3. The stochastic gradient estimation method (Ho and Cao, 1991;
Glasserman, 1991; Fu and Hu, 1997; Glynn, 1987; Rubenstein and Shapiro,
1993; Pflug, 1989, 1996) is an enumeration method based on a local
search that adjusts parameters, which should be continuous, to generate
alternate scenarios. The proposed method also enumerates scenarios (in
our case, short-term schedules); however, our scenarios are not based on
the derivatives of certain parameters but on novel estimates of the KPIs
provided by the simulation process. In particular, the search is not local.
Based on this section, we concluded that none of these procedures
is the same or similar to the one proposed in this study. Therefore,
we are contributing to a new simulation-optimization methodological
development.
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2.2 Combination of simulation and optimization in mining

Previous studies, which combine optimization with DES, have been mainly
applied to the truck-shovel transportation system in open-pit mines. A
conventional approach is to integrate both the tools as a combined run. In
other words, the simulation model invokes the optimization model when the
state of the mine operation changes to assist the simulation model to allocate
the available pieces of equipment for the mine operation according to the new
state. The mine operation state changes when a piece of equipment undergoes
failure or is subjected to maintenance or when a shovel completes extracting
all the materials at its mining face.

The aforementioned approach has been applied in the following reports
in the context of open-pit mine operations. Mena et al (2013) proposed an
MILP model to allocate trucks to transportation routes. The simulation model
considers the density probability distribution to model (i) the uncertainty
of the operational parameters and (ii) the time between failures and the
time required to repair the load and hauling equipment. Fioroni et al (2008)
presented an MILP model to allocate shovels to mine faces and the number
of trips that can be carried by each type of truck to these faces, subject
to production and blending constraints. Upadhyay and Askari-Nasab (2016,
2017, 2018) described an MILP model to allocate shovels to mine faces to
maximize production, achieve the desired head grade and tonnage at crushers,
and minimize shovel movements.

Other researchers have combined the techniques of optimization and
simulation differently. Bodon et al (2011) and Sandeman et al (2010) proposed
a linear programming model that determines the quantity of ore extracted
from each mining face that was transported to the mine stockpiles, the ore
transported from each mine stockpile to the port stockpile, and the ore
transported from each port stockpile to ships, maximizing the throughput
of material from a pit to ship. An initial schedule is generated for the first
two weeks of a one-year horizon; subsequently, this schedule is simulated.
Subsequently, the authors generate a schedule of the next two weeks using
as an input the result of the simulation of the first two weeks. Then, they
simulate this second schedule, and so on.

Only limited literature is available regarding underground mining that
combines optimization with DES due to the complex nature of the generation
of mine production schedules in underground mines when compared with
open-pit mines (Musingwini, 2016). Chanda (1990) presented an MILP model
to perform short-term production scheduling of a sector of a continuous
block caving mine by considering constraints, including the availability of
drawpoints and limits on the production and ore quality, to minimize the
difference between the average grades in successive periods. This model was
combined with a simulation to generate short-term production schedules for
six consecutive work shifts. Winkler (1998) described an optimization model
for a sub-level caving mine, which defines the amount of ore that can be
extracted from each block and each period, minimizing the deviation from
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production goals, by considering various constraints, including the ore quality,
the minimum amount of extraction of each block, and the capacity of available
ore. The model is solved to generate a schedule for a single period, which
is subsequently simulated. This same procedure is repeated for successive
periods. Salama et al (2014) compared different mineral haulage systems using
a simulation to estimate the mining costs in a sub-level stoping mine. This cost
serves as an input to a mixed-integer optimization model, which generates a
long-term schedule that maximizes the NPV.

Thus, the reviewed reports, which combine the optimization and simulation
applied in mining, use optimization and simulation in a sequential manner or
use optimization as a simulation subroutine. None of these studies present any
feedback between the optimization and the simulation model, as proposed in
this study.

3 Framework description

In this section, we describe the proposed framework, which combines
simulation and optimization via an iterative approach, to improve adherence
to short-term production schedules. In each iteration, we generate a short-term
mine production schedule by solving an optimization problem; subsequently,
we simulate this schedule using a DES model of mine operation. The steps can
be given as follows (also presented in Figure 1):

Fig. 1 Simulation-optimization iterative framework diagram

1. Obtain initial KPIs through benchmarking or deterministic estimation.
2. Generate an initial short-term production schedule by solving a

mathematical optimization problem for the current KPI values. This
short-term schedule considers a material that has been extracted according
to the long-term schedule.

3. Simulate the short-term production schedule generated in Step 2.
4. Update the KPIs per period for each equipment obtained from the

simulation of the short-term production schedule.
5. Calculate the actual adherence of the corresponding simulation to the

schedule.
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6. Whenever any termination criteria is satisfied, e.g., when the schedule
adherence index is less than or equal to a specific critical value or a
maximum computation time is reached, the procedure is terminated;
otherwise, go to Step 2.

The fundamental concept of the proposed framework is that in each
iteration, better estimations are obtained for the equipment’s KPIs based on
the simulation results of the short-term mine production schedule.

Considering the operational uncertainty in the mining operation, the role
of the replications is to represent all the potential results obtained when
performing the simulation of a given mine schedule as accurately as possible.

In the subsequent iteration, we use new estimations of the equipment KPIs
as inputs for the optimization model to generate an updated short-term mine
production schedule. This procedure is repeated until a specific stop criterion
is reached. The simulation of the short-term mine production schedule allows
us to consider majority of the complexities and operational uncertainties
associated with the mine operation, which are difficult and cumbersome to
incorporate into a mathematical optimization model. Thus, the estimation
of all the equipment KPIs can be improved. In other words, the simulation
of a particular short-term mine production schedule allows us to obtain
an explicit quantification of the maintenance equipment times, equipment
failures, travel time between the locations at which the equipment is used
to perform mining activities, and equipment times. The backup time refers to
the equipment that is available for operation but is not operating because of
a specific condition of mine operation. Furthermore, the simulation considers
the exact dispatching routines that assign equipment to mine faces and the
on-site specific operational rules for a particular mine. It is noteworthy that
the described framework is general because it can be used to address the
operational uncertainty in many other situations in which a deterministic
model is used; this kind of uncertainty has to be handled. However, its specifics
are certainly dependent on the application. The optimization and simulation
models consider all the relevant equipment and tasks to reliably emulate the
mine operation. The selection of the type of KPIs to be estimated in each
iteration is critical for the application of the framework. Usually, the utilization
of the pieces of equipment, which is the ratio of the effective time and the
nominal time, is the selected KPI.

The optimization feedback to the simulation is presented in Figure 1. At
the beginning of each iteration, we generate a short-term production schedule
by solving an optimization problem. Based on this schedule, a list of priority
tasks is created. This list is the input into the simulation model. Thus, the
simulation model follows a short-term production schedule. The process by
which the tasks are sorted to create a list of priority tasks is based on the
start and completion periods of each activity obtained based on the short-term
production schedule. If there is a tie in the order of two or more tasks, it can
be broken using ad hoc criteria that depend on the application.
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The simulation feedback to the optimization process is described here. At
the beginning of each iteration, we generate a short-term production schedule
by solving an optimization problem, which is further simulated. Subsequently,
we compute the mean KPIs of all the replications of the corresponding
simulation based on the simulation data for each piece of equipment.

4 Adherence of a schedule

We propose several indices to evaluate the adherence to a short-term
production schedule. Some of these indices are related to the start and
completion periods with respect to the schedule and its corresponding
activities. Other indices are related to the material movement in case of the
schedule and its corresponding simulation. We summarize the notation related
to the optimization model and the simulation model in Tables 1 and 2.

Table 1 Optimization problem notation

Symbol Description

Si
a Start period of the activity a, according to the mine schedule, in iteration

i.
Ci

a Completion period of the activity a, as in the mine schedule, in iteration
i.

M Total material movement, according to the mine schedule.
MP i

t Total material moved in the mine schedule in period t, in iteration i.

Table 2 Simulation problem notation

Symbol Description

Si
a,r Start period of the activity a, in replication r, in iteration i.

Ci
a,r Completion period of the activity a, in replication r, in iteration i.

M i
t,r Total material moved in the mine in period t, in replication r, in iteration

i.
MSi

t Mean material simulated over all the replications in period t, in iteration
i.

yia,r Equal to 1 if Si
a,r ≤ Si

a; otherwise, 0.
zia,r Equal to 1 if Ci

a,r ≤ Ci
a; otherwise, 0.

It is important to note that all the adherence indices defined in this section
are associated with a given mine schedule. During the application of the
proposed framework, one mine schedule is generated per iteration. Thus, the
values of the adherence indices will vary during each iteration.
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4.1 Mean lateness, earliness and tardiness

The initially proposed indices are related to the concepts of lateness, tardiness,
and earliness, as obtained from the literature (Baker and Trietsch, 2009). Given
an activity a, its lateness corresponds to the difference between its completion
time and deadline, which can be either positive or negative. The tardiness
of the activity corresponds to the positive difference between its completion
time and deadline, whereas its earliness corresponds to the negative deviation
between its completion time and deadline. For details, refer to the second
column of Table 3.

We extend these concepts to a setting in which multiple activities and
replications are present. First, we compute the corresponding activity index
for each activity a and replica r. Second, we add all the activity indices and
subsequently average them based on the number of replications to generate
representative indices for the schedule, including the mean lateness (L̄i), mean
tardiness (D̄i), and mean earliness (Ēi) of the given schedule. For details, refer
to the third column of Table 3.

Table 3 Comparison of the activity and schedule lateness, tardiness, and earliness

Index name Activity expression Schedule expression

Lateness Li
a,r = Ci

a,r − Ci
a L̄i =

1

|A||R|
∑
a∈A

∑
r∈R

Li
a,r

Tardiness Di
a,r = max{0;Li

a,r} D̄i =
1

|A||R|
∑
a∈A

∑
r∈R

Di
a,r

Earliness Ei
a,r = max{0;−Li

a,r} Ēi =
1

|A||R|
∑
a∈A

∑
r∈R

Ei
a,r

The interpretation of the indices in Table 3 is explained below. A mean
lateness value of greater than zero indicates that the schedule is late when
compared with its simulation on an average. A mean lateness value of zero
indicates that the schedule is on time relative to its simulation on an average.
A mean lateness value of less than zero indicates that the schedule is ahead
of its simulated schedule on an average. Based on the mathematical definition
in Table 3, the mean tardiness and mean earliness are observed to be greater
than or equal to zero. A mean tardiness value higher than zero indicates that
the schedule is late relative to its simulation on an average. A mean tardiness
value of zero indicates that the schedule is on time relative to its simulation
on an average. Similarly, a mean earliness value of higher than zero indicates
that the schedule is ahead of its simulation on an average. A mean earliness
value of zero indicates that the schedule is on time relative to its simulation
on an average.
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4.2 Start and completion period adherence indices

We also define the start period and completion period adherence indices. The
start period adherence index is the fraction of activities over all the replications
that began in a period equal to or before the short-term mine schedule period.
Similarly, the completion period adherence index is the fraction of activities
over all the replications that were completed in a period equal to or before its
mine schedule completion period. Refer to Table 4.

Table 4 Start and completion period adherence index

Index adherence name Index adherence expression

Start period adherence index SAIi =
1

|A| · |R|
∑
a∈A

∑
r∈R

yia,r

Completion period adherence index CAIi =
1

|A| · |R|
∑
a∈A

∑
r∈R

zia,r

4.3 Production and material movement adherence

We introduce adherence indices related to material movement. Therefore, we
introduce the material adherence index, which measures the deviation of the
material movement with respect to the mine plan and simulation. The material
adherence curve is the ratio of the accumulated material of the simulations up
to period t and the accumulated material of the mine plan up to period t. For
example, if this index is greater than one at a certain period, the simulation
produced more material when compared with that produced by the mine
schedule on an average, as presented in Table 5.

Table 5 Material adherence indices

Index adherence name Index adherence expression

Material adherence index MAIi =
1

M

∑
t∈T
|MP i

t −MSi
t |

Material adherence curve AT i(t) =

∑t
t′=1MSi

t′∑t
t′=1MP i

t′

The adherence indices presented in Table 5 can be adapted depending
on the application. For instance, the adherence can be evaluated by only
considering a subset of the total scheduled activities (for example, development
and production activities) instead of considering all the scheduled activities.
With respect to the material adherence indices, it is possible to consider the
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type of material instead of the total material transported when evaluating
the adherence index (for example, to distinguish the production material from
different mine operation sectors).

5 Application to the operation of a Bench & Fill mine

We apply the proposed framework to B&F mine planning. Therefore, we
develop an optimization model that can be used to generate the mine
production schedule of a B&F mine. We also develop a simulation model that
supports the simulation of the B&F mine production schedule generated by
the optimization model. This section explains the B&F mining method and
describes the optimization and simulation model, including the manner in
which these models interacted to obtain the proposed framework.

5.1 Description of the Bench & Fill mining method

The B&F method is an underground mining method, which is applied to ore
bodies exhibiting vertical or sub-vertical geometry. Drift and stope are the
two types of mining workings that have been used in this study. A stope is the
basic mine production unit, which exhibits a tabular or semi-tabular form and
contains the ore that is to be extracted. To access each stope, it is necessary
to develop two drifts, i.e., the production drift (lower drift) and the drilling
drift (the upper drift), in the upper and lower parts of the stope in advance.
After the extraction of ore from the stope, it is necessary to backfill the empty
portion of the stope from the drilling drift to maintain the stability of the
walls and roof of the stope. Figure 2 depicts the side view of a stope in a B&F
mine.

Fig. 2 Side view of a stope in a B&F mine

To completely develop the drifts and stopes associated with this mining
method, a set of sequential mining activities should be performed using
specific mining equipment. In order to complete each portion of drift,
the following activities should be sequentially performed: drilling, charging,
blasting, mucking, scaling, shotcreting, and bolting. The first activity is
drilling, which consists of drilling boreholes in a certain drill pattern in the
rock face of the drift using a face drill rig. Subsequently, the drills in the drift
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face are charged with explosives using an explosive charger, and that portion
of the drift is then blasted. Next, a load-haul-dump vehicle (LHD), which
is a machine similar to a conventional front-end loader used in underground
mining, mucked the blasted material, and a scaler was used to eliminate loose
rock from the roof or walls of the drift. Shotcreting projects a mixture of
concrete, water, sand, and gravel onto the drift walls using a compressed air
device mounted on a piece of shotcrete equipment to ensure drift stability.
Finally, a piece of bolter equipment is used to install bolts in the drift walls
to achieve drift stability.

The extraction of a portion of stope requires benching, explosive charging,
blasting, extraction, and backfilling. Benching comprises drilling boreholes in
the drilling drift using a production drill rig. Further, the benching boreholes in
the stope are charged with explosives using an explosive charger. Subsequently,
the portion of the stope charged using explosives is blasted, and the blasted
ore is extracted using the LHD equipment. Finally, the empty portion of the
stope is backfilled using a backfill truck and non-cemented rock fill.

Globally, the extraction of each stope is ascendant. The progress of ore
extraction and the backfilling of the portions of the stope are conducted in
the opposite direction when compared with that of the extraction and drilling
drifts. Figure 3 illustrates the sequencing of three stopes (S1, S2, and S3). The
arrows indicate the advance direction of each mine working. The extraction
order of the stopes is ascendant and follows the order of S1, S2, and S3. The
extraction sequencing of stope S1 is the extraction of drift D1 and the benching
of drift D2 as well as the extraction and backfilling of the stope portions S1.1,
S1.2, S1.3, and S1.4

Fig. 3 Mine sequencing in a B&F mining method
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5.2 Optimization model

We propose an optimization model based on MILP to generate short-term
production schedules in B&F mines. This model schedules activities that result
in profit (income minus costs) and that demand resources (e.g., effective time,
which is the time interval in which the equipment is performing an productive
task) for their completion. The activities that result in a profit lower than zero
are also included because they must be completed to access activities resulting
in a profit of greater than zero. The optimization model maximizes the NPV
over the planning horizon, subject to an activity’s precedence and resource
constraints.

The solution of the optimization model can be observed as a Gantt chart,
where the fraction of progress of each activity is specified in each period of the
planning horizon. This optimization model is embedded in a software called
UDESS, which provides utilities for generating, resolving, and analyzing the
general scheduling MILP optimization problems. The software is implemented
via Python. UDESS can be used through scripts or a graphical user interface.

We present the sets, parameters, and variables of the optimization model
in Tables 6, 7, and 8, respectively.

Table 6 Sets of the optimization problem

Symbol Description

A Set of activities.
Q Set of stope-type activities.
Pa Set of activities precedence of activity a.
T Set of periods, T = {1, . . . , T}.
E Set of equipment fleet types.
S Set of mine sectors.
H1

a Set containing the stope activity a and its corresponding production drift
activity.

H2
a Set containing the stope activity a and its corresponding drilling drift

activity.
H3

a Set containing the stope activity a and its corresponding upper stope
activity, if it exists.

5.2.1 Activity modeling

Here, we describe activity modeling in UDESS to generate a short-term
production schedule for a B&F mine. First, we describe the types of workings
in a B&F mine and subsequently explain the slice discretization process of
these workings.

The B&F mining method has two types of mine workings, i.e., drifts
and stopes. Each stope has two drifts, i.e., the production drift (below
the stope) and the drilling drift (above the stope). Before beginning a
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Table 7 Parameters of the optimization problem

Symbol Description

α Discount rate per period.
Ca Value of activity a.
Ne Quantity of equipment type e.
T Number of periods.
NTt Nominal time in period t.
Ta Time to perform the activity a.
Ta,e Time to perform the activity a with mining equipment of type e. If activity

a does not require equipment e, Ta,e is equal to zero.
UTe,t Utilization of equipment e at period t.
UTe,t,s Utilization of equipment e at period t in mine sector s. If activity a does

not require equipment e or activity a does not belong to sector s, Ta,e,s
is equal to zero.

Table 8 Variables of the optimization problem

Symbol Description

sa,t ∈ {0, 1} If activity a has started in period t or before; otherwise, 0.
ea,t ∈ {0, 1} If the activity a is not finished at the beginning of the period t; otherwise,

0.
xa,t ∈ [0, 1] The fraction of progress made by the activity a in period t.

stope activity, the production and drilling drifts should be completely
developed. To completely develop a mine working, different activities should
be conducted. Thus, to completely develop a drift, the following activities must
be sequentially performed: drilling, explosive charging, blasting, hauling, and
backfilling. Similarly, to completely develop a stope, the following tasks must
be sequentially performed: benching, explosive charging, blasting, hauling, and
backfilling.

The slice discretization process is performed to reflect the actual progress
of the exploitation of a B&F mine. This process involves the discretization of
both types of workings (drift and stope) in equal length slices so that each
slice represents one activity in the UDESS model. Figure 4 represents the
slice discretization process of two stopes (in gray) and three stopes (in white),
including the precedence of the activities. In this figure, instead of considering
drift and stope activities of length ∆, we work with several activities of length
δ.

5.2.2 Constraints

In this section, we explain the constraints of the optimization problem.
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Fig. 4 The slice discretization process of B&F three drifts (in white) and two stopes (in
grey) in UDESS

sa,t+1 ≥ sa,t ∀a ∈ A,∀t ∈ T \ {T} (1)

ea,t ≥ ea,t+1 ∀a ∈ A,∀t ∈ T (2)

xa,t ≤ sa,t ∀a ∈ A,∀t ∈ T (3)∑
t∈T

xa,t ≤ 1 ∀a ∈ A,∀t ∈ T (4)

1− ea,t+1 ≤
t∑

t′=1

xa,t′ ∀a ∈ A,∀t ∈ T (5)

sa,t ≤ 1− ea′,t+1 ∀a ∈ A,∀a′ ∈ Pa,∀t ∈ T (6)

0 ≤ xa,t ≤ 1 ∀a ∈ A,∀t ∈ T (7)

ea,1 ≥ 1 ∀a ∈ A (8)

ea,t ∈ {0, 1} ∀a ∈ A,∀t ∈ T ∪ {T + 1} (9)

sa,t ∈ {0, 1} ∀a ∈ A,∀t ∈ T (10)∑
a′∈Hi

a

Ta′ · xa′,t ≤ NTt ∀t ∈ T ,∀a ∈ Q,∀i ∈ {1, 2, 3} (11)

∑
a∈A

Ta,e · xa,t ≤ NTt · UTe,t ·Ne ∀t ∈ T ,∀e ∈ E (12)∑
a∈A

Ta,e,s · xa,t ≤ NTt · UTe,t,s ·Ne,s ∀t ∈ T ,∀e ∈ E ,∀s ∈ S (13)

Constraints (1) and (2) define the progress of the variables sa,t and ea,t over
time. Constraint (3) prevents that an activity a from progressing if it has not
started. Constraint (4) imposes that the maximum fraction of progress over
the scheduling horizon of an activity a is less than or equal to 1. Constraint (5)
sets activity a as finished when has completed its progress. The activity has
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been fully completed in period t when the sum of the progress of that activity
from period 1 to t is equal to 1.

Constraint (6) imposes that an activity a can only start when all its
precedence activities j ∈ Pa are completed. This constraint models the
logical order in which the drift and stopes activities are developed. There
are five types of activity precedence constraints (Figure 5) Type 1 precedence
restricts the sequential advance between the portions of drifts, whereas Type
2 precedence restricts the sequential advance between the portions of stopes.
Type 3 precedence ensures that the production drift of the stope must be
entirely developed before the operation of the stope itself is initiated. Type
4 precedence ensures that the drilling drift of the stope must be entirely
developed before the operation of the stope itself is initiated. Finally, Type 5
precedence ensures that the operation of an upper stope cannot be initiated
before the lower stope (if any) is finished.

Fig. 5 Mine precedence between drift activities (in white) and stope activities (in gray) in
a B&F mine.

Constraint (7) sets the range of variables xa,t; constraint (8) sets the
activity a in period t = 1 as unfinished. Constraints (9) and (10) set the
range of variables ea,t and sa,t, respectively. Constraint (11) ensures that the
nominal time between different neighboring activities is not exceeded in each
period. Constraint (12) requires that the sum of the effective time of the type
of the mining equipment fleet e on all the activities performed in period t
must be less than or equal to the maximum effective time during that period.
Finally, constraint (13) ensures that each type of mining equipment fleet can
operate only in specific mine sectors. This constraint requires that in each
mine sector s, the sum of the effective time of each type of mining equipment
fleet e on all the activities performed in period t must be less than or equal to
the maximum effective time during that period.
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5.2.3 Objective function

The objective function of the optimization problem is presented in (14).

max
∑
t∈T

∑
a∈A

1

(1 + α)t
· Ca · xa,t (14)

5.3 Simulation model

The integration of a simulation model with an optimization model can be
a considerably challenging task. Although some DES simulation commercial
software (ARENA® and ProModel®) have been applied to study mine
operations (Torkamani and Askari-Nassab, 2015; Hashemi and Sattarvand,
2015; Ataeepour and Baafi, 1999), they exhibit limited capabilities to
efficiently and simply interact with an optimization model. Therefore, we have
developed a simulation software called Delphos Simulator (DSIM).

DSIM is a DES software used to simulate mine operations, including
material handling systems in open-pit mines and production and preparation
in underground mines. It is coded via Python using a specific simulation library
called SimPy. DSIM implements (a) a set of functions that allow easy definition
of a layout and the modeling of equipment movements, (b) several pieces of
equipment that can be used with or without extension to model considerably
complex situations, and (c) reports details specially to mine operations (cycle
times and production).

Specifically, we use the B&F simulation model based on the model
described in Pérez et al (2017). The simulation model implements all the
required tasks for the development of a B&F mine. The inputs of the simulation
model include (i) the activities to be performed, (ii) the mining equipment,
(iii) the mine layout, and (iv) the list of priority tasks. For the simulation,
it is assumed that one day comprises three operating shifts, a shift change
lasting one hour, and one hour for meals per shift. In the simulation model,
the pieces of equipment vary based on their operational states, which can
be given as follows: program delays (time interval in which the equipment
is not in operation because the operators are changing shift or on meal
time), operational losses (the equipment waiting time because other equipment
travel through the same drift), backup (time interval in which the equipment
is available for operation but is not in operation either (i) it has pending
tasks however is unable to complete them because of other tasks needs to be
completed before or (ii) there are no pending tasks to be completed for this
equipment), non-available time (time interval in which the equipment is not
available owing to failure or maintenance), and effective time (time interval in
which the equipment is performing productive tasks).

Here, we describe the operation details of the simulation model. The
mine layout contains two types of elements, i.e., transport routes and fronts.
Transport routes are the roads that are used by the pieces of equipment
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to reach different fronts. A front is a physical location at which the mining
equipment conducts its activities. A front can be either a drift or stope. The
type of front determines the performed activities and the type of equipment
assigned to the front. Each front has an attribute called ”current activity,”
which indicates the activity that should be performed next. Further, each
piece of equipment has a list of priority activities that should be conducted
as input. The order of these activities is based on the start and end periods
obtained from a given short-term mine production schedule.

At the beginning of the simulation, the drift- and stope-type fronts begin
with the states of ”drilling” and ”benching,” respectively. Throughout the
simulation, the pieces of equipment travel to different fronts to execute the
activities in the order based on the list of priority activities. The activities are
performed by respecting the activity precedence given using the B&F method,
and only one item of equipment is allowed to perform an activity at any given
time. When a piece of mining equipment completes its assigned activity, the
activity transitions from the current activity of the corresponding front to the
next activity based on the precedence of activities.

The general flowchart of the B&F simulation model, which involves
development, production, and backfill of stopes, is presented in Figure 6. It
is important to mention that the simulation model does not consider the
construction of the main ramp to access the ore body because this study
focuses on short-term scheduling.

Fig. 6 General flowchart of the B&F simulation model
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5.4 Optimization and simulation feedback

In this section, we explain the interaction of optimization with simulation and
vice versa in the B&F application.

5.4.1 Optimization feedback to simulation

A short-term production schedule is generated at the beginning of each
iteration by solving an optimization problem. For each type of activity (drift
and stope activities), a list of priority tasks is created based on this schedule.
Each of these lists is provided as input to the simulation model. Thus, the
simulation model follows a short-term production schedule.

To create the list of drift-type activities, each drift activity is sorted in an
ascending order according to the following criteria: (1) minimum start period
of the first portion of the drift; (2) minimum completion period of the final
portion of the drift; (3) minimum start period of the first portion of the stope
associated with the drift; and (4) minimum completion period of the first
portion of the stope associated with the drift. In the B&F method, a drift
can be located between two stopes (the upper and lower stopes) or on one
stope (the lower stope). The stope associated with the drift corresponds to
the upper stope, if it exists. Otherwise, the associated stope corresponds to
the lower stope.

If there is a tie with respect to a particular criterion, it is broken by applying
the immediately following criterion and so on. For example, while sorting the
drift types of activities, if two or more drift activities have equal minimum
start periods with respect to the first portion of the drift (first criterion), the
drift activities are sorted using the minimum completion period of the final
portion of the drift (second criterion). If these activities have equal minimum
completion periods with respect to the final portion of the drift, the criterion
used to sort the drifts is the minimum start period of the first portion of the
stope associated with the drift (third criterion) and so on.

Similarly, to create a list of the stope-type activities, the stope activities
are sorted according to the following criteria, which are applied sequentially
until there is no tie: (1) minimum start period of the first portion of the stope;
(2) minimum completion period of the first portion of the stope; (3) minimum
start period of the final portion of the stope; and (4) minimum completion
period of the final portion of the stope.

5.4.2 Simulation feedback to optimization

A short-term production schedule is generated at the beginning of each
iteration by solving an optimization problem. Subsequently, this schedule is
simulated using the DES model to obtain the average utilization for each
piece of equipment for each period over all the replications UTe,t at the end of
the simulation process. The mean effective time over the replications for each
period is subsequently calculated in (15).
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SETe,t =
1

|R|
∑
r∈R

SET r
e,t ∀e ∈ E ,∀t ∈ T (15)

Where SETe,t is the mean of simulated effective time of the equipment e
in period t, and SET r

e,t is the mean of effective time of the equipment e in
period t in the replication r.

Before feeding this data to the next optimization problem during the next
iteration, precise adjustment of the mean effective time is necessary for each
equipment. Thus, the total sum of the simulated effective time SETe must be
equal to the sum of the planned effective time PETe used in the optimization
problem to ensure the feasibility of the optimization problem.

Therefore, for all the periods t, the quantity SETe,t is multiplied with PETe

SETe

to obtain the modified simulated effective time ˆSET
e

t . Refer to (16).

ˆSET e,t =

(
PETe
SETe

)
· SETe,t ∀e ∈ E ,∀t ∈ T (16)

Thus, the sum over all periods of the modified simulated effective time
ˆSET e,t is equal to PETe. Refer to (17).∑

t∈T

ˆSET e,t = PETe ∀e ∈ E (17)

Finally, the average utilization of each piece of equipment for each period
over all the replications UTe,t is calculated as the ratio of the modified

simulated effective time ˆSET e,t and the total time per period in hours. As
each time period comprises a month (30 days), each time period has 24 · 30
hours in total. Refer to (18).

UTe,t =
ˆSET e,t

24 · 30
∀e ∈ E ,∀t ∈ T (18)

In the next iteration, the average utilization of each equipment for each
period UTe,t is fed into constraint (12) to generate a new short-term mine
production schedule. For an equipment working in specific mine sector, the
procedure to calculate the average utilization per equipment for each period
per mine sector UTe,t,s is similar to the procedure used to calculate UTe,t.
This quantity is fed into constraint (13) to generate a new short-term mine
production schedule.

6 Case study

A case study of a real-world data of a B&F mine is considered for
understanding the application of the simulation-optimization framework. The
mine is comprised of two exploitation zones (East and West), and each contain
three levels. Figure 7(a) shows the isometric view of the mine, whereas Figure
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7(b) depicts the plan view. Figure 8(a) illustrates the North-South side view
of the mine whereas the Figure 8(b) represents the East-West side view.

Figure 7 and 8 illustrate the mine workings in the mine: stopes (in brown),
crosscuts (in green), main drifts (in yellow), access ramps (in red), and the
access drifts (in blue). Crosscuts connect the different stopes with the main
drifts. For their part, main drifts connect the different crosscuts with the
corresponding access ramp. Finally, access drifts connect the West and East
sectors with other sectors of the mine.

The ore deposit is of the epithermal type of gold and silver, comprising
of veins with an average width of 2.1 m. Table 9 summarizes the number
of activities by activity type (drift, stope and backfill). The total number of
activities to be scheduled differs from the total number of tasks, because the
slice discretization process explained in Section 5.2.1 is conducted using a slice
discretization length of 9.0 m for each mining task. This length corresponds
to the length of the portion of the ore extracted from the stope subsequent
to which the backfill of the stopes in the real mining operation begins. Table
10 shows the mining equipment involved in the B&F mine. In each zone, one
LHD and production drill rig work exclusively; hence there are four pieces of
equipment in total. Table 11 describes the relation between the tasks and the
mining equipment used to perform the mining activities.

Table 9 Summary of the B&F mine case study activity type

Activity type
Number of

mine workings
Total activities
to be scheduled

Total length [m] Material [kt]

Drift 89 568 3430 226.57
Stope 67 428 4568 192.26

Backfill 67 428 4568 362.41

Table 10 Mining equipment used in the B&F mine case study

Equipment Number Availability [%]

Face drill rig 1 68.2
Explosives charger 1 78.5

LHD 2 65.1
Scaler 1 75.8

Shotcrete 1 79.4
Bolter 1 82.4

Production drill rig 2 69.8
Backfill truck 1 79.0

The mining equipment distribution parameters used in the simulation are
presented in Table 12. In this table, U(a, b) represents a uniform distribution,
W (k) represents a 1-parameter Weibull distribution, and N(µ, σ) represents a
normal distribution. The types of probability distributions used are obtained
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Fig. 7 Isometric (a) and plan view (b) of the B&F mine case study

Fig. 8 North-South side view (a) and West-East side view (b) of the B&F mine case study

based on the best fit obtained from the historical data. For further details of
the probability density distribution, please consult Oliphant (1995).

All the computational experiments presented in this study were performed
on a 2.60 GHz Intel® Xeon® CPU with 256 GB RAM, operating on the
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Table 11 Relation between the mining equipment and tasks in the B&F mine case study

Tasks

Mining Equipment Drift Stope

Face drill rig Drilling
Explosives charger Charging Charging

Explosives Blasting Blasting
LHD Mucking Hauling
Scaler Wedging

Shotcrete Shotcreting Shotcreting
Bolter Bolting

Production drill rig Drilling
Backfill Truck Backfilling

Table 12 Mining equipment’s probability density distributions

Parameter Probability density distribution

Time between failures [min] 1
4
· 46 ·W (1.7) · 1440

Time to repair [min] 1
4
· 1.35 · ln(1.1) · 1440

LHD maintenance [min] 120 + U(−20; 60)
Jumbo maintenance time [min] 180 + U(−20; 60)
Simba maintenance time [min] 180 + U(−20; 60)

LHD bucket load [t] 5 + U(−1.5 + 1.5)
Drift length [m] 3 + U(0; 0.5)

Drift drilling time [min] DriftLength · 0.4
2·N(1;0.02)

+ 15

Stop Benching time [min] 96
N(1;0.02)

+N(30; 5) · 12

Load/Dump LHD time [s] 15 + U(−2; 12)
Explosive charger time [min] 30 + U(0; 60)

Backfill time [min] 20 + U(−5; 5)
Wedging time [min] 30 + U(0; 30)

Shotcreting time [min] 60 + U(0; 30)
Bolting time [min] 90 + U(0; 30)

Windows 8® operating system. The optimization model is solved using
Gurobi (Gurobi Optimization, 2018). The proposed framework considers a stop
criterion for the iteration procedure when the value of one adherence index is
less than or equal to a particular critical value. In the B&F mine case study,
the iteration procedure stops when the value of the material adherence index in
a given iteration is less or equal to 5%. We select this value because additional
iterations to improve it was not considered to be worth the computational time;
however, a different value could be set if necessary. The optimization model
considers periods of one month, with a scheduling horizon of approximately a
year and a half. The mine schedule assumes that the mine workings required
to access the production and drilling drifts have been already developed. The
initial utilization value for the mine equipment corresponds to the availability
reported in Table 10. The annual discount rate observed with respect to the
objective function of the optimization model is 10%.
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We analyze the cumulative mean of the steady monthly production rates
for the drift, stope, and backfill over replications to determine the number of
simulation replications. The number of replications is selected such that the
cumulative average of the production rates becomes stabilized. Based on this
criterion, the number of simulation replications is concluded to be 100. We did
not consider a warm-up period at the beginning of the simulation because the
conducted simulation considers a mine from the beginning of its production
that attains a steady production rate after some months.

To validate the simulation model, we use the confidence interval procedure.
The drift, stope, and backfill steady monthly production rates are selected
as the response variables of the simulation model. We run a total of 100
replications to obtain the sample mean and standard deviation of the model
response variables from the simulation replications. A student’s t-distribution
of the response variables is conducted (because the standard deviation of the
response variables is unknown), and a confidence level of 95% is assumed for
calculating the confidence intervals. Based on the short-term mine production
model generated from the optimization model, the steady annual production
rates for a drift, stope, and backfill are used to verify whether these values
are within the corresponding intervals. It is then verified that the response
variables are within the confidence intervals, verifying the validity of the model
for the considered response variables.

7 Results and discussion

In this section, the results and discussion are presented based on the
application of the simulation-optimization framework to the B&F case study.
The procedure stops when the material adherence index is 4.8%, which is
lower than the specified critical value of 5%. With this criterion, we performed
a total of five iterations. In this way, using the optimization problem we have
generated a total of five schedules. Each schedule requires an average of 23 min
to be resolved. The simulation of each schedules, containing 100 replications,
requires approximately 5 h for completion in average.

Figures 9 and 10 show the short-term mine production schedule obtained
from the resolution of the optimization model (a), and the average of the mine
production schedule obtained from the simulation (b), for the first and fifth
iterations, respectively.

In the first iteration (Figure 9), discrepancies can be observed between
the schedule obtained from the optimization model and the average of the
simulated schedule with respect to the level of movement of material in the
early periods. This discrepancy affects the number of periods required to
complete the extraction at the mine. The schedule needs 14 periods, and
the average simulated schedule needs 16 periods. This result is not desired
but it is expected because the optimization model alone fails to consider the
operational uncertainty of the mine’s operation.
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Fig. 9 Schedule obtained from the optimization model in the 1st iteration (a) and average
of the schedule obtained from its corresponding simulation (b)

However, in the fifth iteration (Figure 10), the discrepancies among the
level of movement of material in the early periods with respect to the schedule
obtained from the optimization model and the average of the simulated
schedule are observed to be minor in comparison with those obtained from
the first iteration. In the fifth iteration, the number of periods necessary to
complete the extraction at the mine with respect to the schedule and the
average of the simulated schedule is 17. This is expected because the effects
of operational uncertainty within the optimization model can be considered
by integrating the simulation. Thus, it is possible to generate a schedule with
smaller discrepancies with respect to the movement of material when compared
with the schedule obtained in the first iteration.

In the following paragraphs, we report each mine schedule’s adherence
indices generated over the iterations of the B&F case study to assess the level
of adherence between the schedule generated by the optimization problem and
the corresponding simulation.

In Table 13, we report the material adherence indices of the mine
schedules generated over iterations. In general, the material adherence index
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Fig. 10 Schedule obtained from the optimization model in the 5th iteration (a) and average
of the schedule obtained from its corresponding simulation (b)

do not always decrease over iterations for every type of material. However,
when considering all types of activities, the material adherence index always
decreased with each iteration. This result implies that the levels of material
movement in case of the schedule and the average of the simulated schedule
become increasingly similar with iterations.

Table 13 A mine schedule’s material adherence index (in percentage) over the iterations,
considering different types of materials

Iteration

Material type 1 2 3 4 5

Drift 10.18 3.83 3.00 3.20 2.63
Stope 18.13 11.29 9.46 9.60 8.80

Backfill 19.00 9.76 6.52 6.00 7.24
Drift & Stope 9.92 6.13 4.98 5.73 4.02

Drift & Stope & Backfill 13.11 7.11 5.48 5.26 4.86

In Figures 11 and 12, we report the material adherence curve for each
mine schedule generated over the iterations considering different material
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Fig. 11 Material adherence curve for the 1st (a), 2nd (b) and 3rd mine schedules

types (drift, stope, and backfill). In the first two iterations (Figures 11(a)
and 11(b)), the material adherence curves of all the materials were lower than
those in the first period. This result indicates that the material movement
in the simulation was late based on the mine schedule. In the subsequent
periods, the adherence curve was approximately one. This result indicates
that the total material movement in the simulation was synchronized with
the mine schedule. In the three subsequent iterations (Figures 11(c), 12(a),
and 12(b)), the material adherence curve of all the materials was greater than
that in the first period. This result indicates that the material movement in the
simulation was ahead of the mine schedule. However, in the subsequent periods,
the material adherence curve of all the materials was near to that. This result
indicates that the material movement in the simulation was synchronized with
the mine schedule.
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Fig. 12 Material adherence curve for the 4th (a) and 5th (b) mine schedules

In Tables 14 and 15, we report the start adherence index and completion
adherence index of the mine schedule generated over iterations, respectively.
As can be observed, the start and completion adherence indices do not always
increase over iterations for every type of material. However, when considering
all types of activities, the start adherence index and completion adherence
index with respect to a given schedule are higher than those of the immediately
previous iteration. This result indicates that the number of simulated activities
that start/end in a period less or equal to the period given by the schedule
increases in each iteration. In other words, the number of simulated activities
that start / end in a period greater than the period defined by the schedule
decreases in each iteration.

Table 14 Summary of the start period adherence index (in percentage)

Iteration

Activity type 1 2 3 4 5

Drift 99.2 96.6 98.2 96.1 97.3
Stope 47.5 58.9 75.2 77.2 79.2

All 77.0 80.4 88.3 88.0 89.5

In Table 16 we report the mean lateness, mean tardiness and mean earliness
of the schedules generated over iterations.
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Table 15 Summary of the completion period adherence index (in percentage)

Iteration

Activity type 1 2 3 4 5

Drift 85.9 73.5 74.5 72.9 82.1
Stope 26.3 45.1 63.7 66.3 69.9

All 60.3 61.3 69.9 70.1 76.9

The mean lateness of the schedule is negative and decreases over iterations.
This result implies that the difference between the completion period of
simulated activities and the completion period of scheduled activities is
negative and increases over the iterations.

Generally, the tardiness of the schedule decreases with each iteration.
This result implies that when we consider the activities which are completed
after the expected period given in the schedule, the difference between
the completion period of simulated activities and the completion period of
scheduled activities over the iterations decreases over the iterations.

Generally, the mean earliness of the schedule increases with each iteration.
This result implies that when we consider the activities which are completed
before the expected period given the schedule, the difference between the
completion period of scheduled activities and the completion period of
simulated activities over the iterations increases over the iterations.

Table 16 Mean lateness, tardiness and earliness (in months) for all the activities over
iterations

Iteration

Index 1 2 3 4 5

Mean
lateness

-0.002 0.127 -0.534 -0.603 -0.863

Mean
tardiness

0.479 0.283 0.176 0.199 0.138

Mean
earliness

0.480 0.701 0.710 0.802 1.000

The results obtained of the adherence indices between of the schedule and
its corresponding simulation over the iterations can be summarized as follows:
(a) material adherence index decreased from 13.11% in the first iteration to
4.8% in the final iteration, (b) shape of the material adherence curve showed
a trend to a horizontal line of unit value over iterations, (c) start adherence
index increased from 77.0% in the first iteration to 89.5% in the final iteration,
(d) completion adherence index increased from 60.3% in the first iteration to
76.9% in the final iteration, (e) mean lateness varied from -0.002 months in
the first iteration to -1.128 months in the final iteration, (f) mean tardiness
varied from 0.479 months in the first iteration to 0.138 months in the final
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iteration, and (g) mean lateness varied from 0.480 months in the first iteration
to 1.000 months in the final iteration.

The results presented in the previous paragraphs and presented in Tables 13
to 16 and Figures 11 and 12 demonstrate, in general, that the adherence indices
with respect to a given schedule and its corresponding simulation are higher
than those of the immediately previous iteration. These results demonstrate
that in each iteration, the optimization problem uses continuous improvement
in the estimation of the utilization KPIs of each mining equipment provided
by the simulations. These estimations imply a better quantification of
the maintenance equipment times, equipment failures, travel time between
locations where the equipment is used to perform mining activities, and
equipment backup times (time during which the equipment is available for
operation even though the equipment is not operative for the specific mine
operation condition). Furthermore, these utilization KPIs estimations consider
the real mine operation behavior that is difficult to consider in an optimization
problem, such as the dispatching rules for transporting equipment to mine faces
and the specific rules of mine operations.

Finally, we compared the NPV and the material adherence index with
respect to all the short-term schedules generated over iterations in Table 17.

Table 17 Comparison between the NPV and the material adherence index short-term
schedules generated over iterations

Iteration

Index 1 2 3 4 5

NPV
[MUSD]

721.7 718.1 716.2 716.2 715.9

% Difference NPV
c/r 1st iteration

0.0% -0.5% -0.8% -0.8% -0.8%

Material adherence
index [%]

13.11 7.11 5.48 5.26 4.86

Based on the results in Table 17, we can state that the improvements in the
adherence of mine schedules over iterations are not obtained at the expense
of NPV. The results denote that the NPV remained constant, whereas the
material adherence index of the mine schedules decreased (Table 17). In other
words, the proposed framework can effectively generate mine schedules over
iterations and simultaneously maintain the NPV.

8 Conclusion and future work

The deviation between mine schedules and the mine operation results are
crucial problems that affect the mining industry. Therefore, the mine engineers
should generate a mine production schedule that can be reproduced in reality.
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Hence, they should develop mine production schedules that exhibit high
adherence.

In this study, we proposed a generic framework to increase adherence
to a short-term mine production schedule by combining optimization and
simulation using an iterative approach. This framework comprises the following
steps. First, an initial mine schedule is generated based on the resolution of a
mixed-integer linear optimization problem. Second, this schedule is simulated
using a DES model. Third, a new short-term mine schedule is created using the
optimization model by considering the new utilization KPIs of each equipment,
obtained from the simulations performed in the previous step, as inputs for
the mine operation. Finally, iterations of the second step are performed. In
each iteration, adherence to each mine schedule is evaluated with respect to
the corresponding simulations by evaluating several adherence indices.

The proposed framework was applied to a real-scale B&F mine. The mine
planning horizon was more than a year and a half, and each period lasted for
one month. A total of five iterations were performed.

We measure the discrepancies among the level of movement of material
with respect to the schedule obtained from the optimization model and the
average of the simulated schedule using the mine schedule material’s adherence
index. The values of this index decreased with the iterations, from 13.1% in
the first iteration to 4.8% in the last iteration. This improvement is explained
because the effects of the operational uncertainty within the optimization
model can be considered by integrating the simulation.

The outcomes of the work presented in this study demonstrate that
the proposed framework improved the mine schedule adherence indices over
iterations and simultaneously maintained the NPV of the mine schedule. The
results demonstrate that the simulation provides a better understanding of the
impacts of uncertainty in short-term mine production schedules.

As future research, the proposed framework will be applied to massive and
selective underground mining methods as well as open-pit mines.
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