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Abstract

The open-pit mine production scheduling (OPPS) problem aims to determine the extraction sequence
of mining blocks of an orebody. The OPPS presents several restrictions that create a combinatorial
optimization problem classified as NP-hard. Generally, an optimal solution for OPPS cannot be obtained
in an acceptable computation time using linear programming; therefore, approximation methods called
heuristics have been used to solve it. In this paper, an artificial intelligence (Al) based methodology is
proposed to obtain operative pushbacks in open-pit mines respecting operational and design constraints.
This integrated approach is achieved through a Genetic Algorithm and a clustering algorithm (k-means).
A Genetic Algorithm is a search heuristic inspired by Charles Darwin’s theory of natural evolution and is
used to solve NP-hard problems. This methodology has been tested in an iron mine and a gold mine and
has been shown to be a practical, viable approach. Results show that pushbacks obtained respect the
design and operational constraints of pit extraction, while also maximizing the net present value (NPV).

1 Introduction

As the life of open-pit mines can span several decades, the optimization of the design and production
plan of a project is critical to maximizing its value. This strategic problem can be seen as composed of two
components: a spatial component, which determines portions or volumes to organize extraction (namely
phases); and a temporal component, which is related to when to extract these volumes or portions of
them.

The most widely used approach to address this problem (in literature and software) is nested pits, which
is in turn based on the ultimate pit problem (Lerchs & Grossmann 1965). This approach focuses on the
spatial component, as it looks for pushbacks or pseudo phases (phases with block support) that comply
with global slope angles, without taking opportunity costs into account. In this approach, production
scheduling is performed in later stages and is subordinated to the spatial definitions given by the nested
pits.

Another possible approach to the problem is direct block scheduling (DBS), proposed by Johnson (Johnson
1968). This approach considers global slope angles, but also production and transportation capacities
over time and, therefore, the opportunity cost. DBS relies on mathematical programming to decide in
terms of NPV what is the best timing for the extraction and processing of each block. As such, DBS is
more focused on the temporal component, and the definition of pushbacks (and phases) is, therefore,
subordinated to the period-by-period extraction.

Another relevant distinction between nested pits and DBS is the computational complexity. As previously
mentioned, the nested-pit methodology relies on the ultimate pit problem, which can be solved efficiently
using the Lerchs & Grossman algorithm or pseudo-flow algorithms (Chandran & Hochbaum 2009). On
the contrary, DBS is computationally hard, and therefore finding good feasible solutions for it has been
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the topic of many research efforts. For example, Jélvez et al. developed a new algorithm to find good
feasible solutions efficiently for large instances of the problem (Jélvez et al. 2020). Similarly, Suarez and
Alipour et al. applied a genetic algorithm to approach the problem (Suarez 2017; Alipour et al. 2020). In
both cases, this approach was tested in a three-dimensional model and showed good results compared
with the optimum.

Something common to these approaches is that they consider operational constraints only as global slope
angles that provide stability, but they do not take into account the design of ramps or operational spaces
required at the bottom of the pit. Figure 1(a) presents an example of pushback with a global angle of 45°
in a conceptual 2-D block model. As the figure shows, the bottom of the pit may not provide enough
space to operate the equipment. Conversely, Figure 1(b) presents an optimal pushback, but where the
bottom of the pit is guaranteed to be at least 4 blocks wide and allows for shovel operation. Notice that
truncating the pit on (a) to have a minimum pit bottom size is not optimal.

a b

Figure 1  Conceptual comparison between pushback section views (a) without considering minimum pit bottom
dimensions and (b) considering a 4-block-bottom pit size

The problem addressed in this work is how to plan and design an open-pit mine by considering the
spatial and temporal components simultaneously, while also seeking operational geometries — like the
one in Figure 1(b) to generate pushback designs that comply with minimum bottom widths — oriented
to maximize the NPV. As the problem addressed is an extension of the existing methodologies, which
are known to be either hard or incomplete, the resolution of the problem uses techniques from artificial
intelligence (Al), namely Genetic Algorithms (GAs) and a clustering technique (in our case, K-Means).

2 State of the art

In this section, we briefly review the relevant aspects of DBS as well as the Al techniques utilized by the
proposed methodology.

21 Open pit production scheduling considering capacities on resource consumption

The reference problem is the scheduling of open-pit production considering some constraints, which is
known as the constrained pit limit problem (CPIT). It is a simplified version of the formulation presented
by Johnson (Johnson, 1968), as it only considers capacities, but not multiple destinations or ore grade
constraints. As originally presented, CPIT considers a set of blocks B, t = 1,2,...,T periods of times, and
the following parameters: an economic discounted value p“,, for each block b and period ¢; a set of
predecessors B, c B for each block b (i.e., the blocks that must be extracted before b in order to comply
with global slope angles); a set R of resources and g,, being the consumption of resource r by block b and
R, the total availability of resource r at period t (Chicoisne et al. 2012).

Given the above, CPIT can formally be written as the following integer linear program (Espinoza et al.
2013), where the binary variable y,. = 1 if and only if block b is extracted and processed at period t:

max z Z Dbt Xbt (M

bEB tET
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The goal function (1) corresponds to the NPV of the extracted blocks. Constraints (2) enforce the
precedence due to global slope angles, constraints (3) that the blocks are extracted at most once, and
constraints (4) that limit the utilization of available resources.

It is worth noting that the ultimate pit problem is a particular case of CPIT where T=1 and R= 9, i.e.
there is only one period and no resource constraints. Also, it is relevant to mention that CPIT is an NP-
hard problem.

2.1.1  CPIT+ with minimum-size pit bottom

As mentioned before, one limitation of CPIT (and other mathematical models) is that it considers geometric
constraints only as global angles. In this article, we are interested in extending this to consider minimum
operational space at the bottom of the pit. We call this extension CPIT+.

CPIT+ considers the same inputs to CPIT, i.e. a valuated block model, global angle precedence and
resources, but adds a radius r, so that the bottom of each pushback has enough space for a circumference
with a radius of at least r bocks (Navarro 2015).

2.2 The Genetic algorithm

The Genetic Algorithm (GA) is an optimization technique introduced by Holland, which is inspired by
biological evolution (Holland 1975). It is considered a powerful tool for optimization in artificial intelligence
as it allows high-quality solutions to be found for optimization problems within reasonable computation
times.

The applicability of GAs is very broad. These algorithms can be applied to solve an optimization problem
as:

max f(x) ®)
xX€S
Where: fis the goal function and S is the set of feasible solutions. The main condition to use GA is that
computation of f(x) and verification of x € S can be done efficiently.

GAs use a population of potential solutions (individuals) for an optimization problem. In each iteration,
the population is improved and updated by allowing individuals with high potential (fitness) to mix
(cross) with each other, and by introducing small changes (mutations) to individuals. The algorithm is
run until some criteria are achieved, for example, when good enough solutions are found or when the
improvement stagnates.

The key elements of a GA are the following (Goldberg 1989):
1. Representation of individuals: Potential solutions to the optimization problem are encoded so

the algorithm can process them by means of binary numbers, integers or decimal numbers,
characters, etc. which in GA terminology are chromosomes within a gene.
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2. Fitness Evaluation: The fitness of an individual emulates how well adapted it is for the conditions
(constraints) of the problem. Usually, it is possible to use the evaluation of f for the individuals,
but sometimes a corrected or adapted version f~is used. Also, this often requires that the
encoding is first transformed into an actual solution.

3. Selection: This is the process of choosing what individuals will be utilized to generate the next
generation of the population. The main principle is that individuals with higher fitness should
have a higher probability of transferring their genes to future generations.

4. Genetic Operators: In order to produce the next population, a GA utilizes two types of genetic
operators:

a. Crossing. In this case, two or more individuals are combined in order to generate 1 or more
descendants.

b. Mutation. This operator changes one specific individual by changing some of its genes.

Some relevant parameters of a GA are the size of the populations, the number of generations, and the
probability of crossing and mutation.

2.3 K-Means clustering algorithm

K-Means (MacQueen 1967) is a clustering technique commonly used to partition a set of data into K
groups, where K is known in advance. The clustering is done by minimizing the sum of distances between
each object and the centroid of its group. K-Means considers the following steps (Wagstaff et al. 2001):
1. Initialization: The algorithm starts with K centroids, randomly chosen.
5. Assignment of objects to centroids: Each object is assigned to its closest centroid.
6. Update of centroids: The centroid of each group is computed as the average of locations of
objects assigned to that group.

The algorithm repeats these steps many times, until the position of centroids stabilizes.

3 Methodology

In this paper, we implement a methodology based on Al and compare it with the standard approach,
which is presented in Figure 2 and described later in this section.

Nested pit
Generation
(Pseudoflow Alg.)

Pushback Selection
(Manual or
Assisted)

Production
Scheduling
(DBS)

Final Pit
(Pseudoflow [~

Alg.)

Pushback
Generation
(K- means)

Operative Cones
(Genetic Alg.)

Figure 2 Comparison between the traditional method and Al-based method
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31 Final Pit and production scheduling

The final pit computation and the production scheduling are common to both methodologies; therefore,
we will describe them separately. The numbers correspond to those in Figure 2.

Final Pit
computation

Production
Scheduling

3.2 Traditional method

The economic block values (based on economic and operational
parameters) are computed. The precedence arcs to represent
the global angle precedence are calculated, and the ultimate

pit is also computed utilizing the pseudo flow algorithm. Notice
that the economic values and precedence are used in later
stages in both methodologies.

The pushbacks are utilized to schedule the blocks for extraction,
period by period. The scheduling considers total movement
capacity as well as minimum and maximum distance between
benches of consecutive phases (min/max lead parameters).

The traditional methodology that we use for comparison is based on nested pits. The steps considered
are shown below. As before, the numbers correspond to Figure 2.

Nested pit
generation

Pushback
Selection

© O

In this stage, price is parametrized by a revenue factor from
0 to 1, to generate several nested pits. Price parametrization
consists of scaling the metal price to create a sequence of N
number of revenue factors. Each revenue factor produces a
new pit, and all the pits are nested. The number of revenue
factors depends on the initial value, the step, and the final
value that the mine planning evaluator assigns (Jélvez et al.
2020).

This is a manual and iterative process, in which some of the
nested pits computed in the previous stage are selected to
create pushbacks. For selecting pushbacks, some parameters
were considered: stripping ratio (waste/ore) between
pushbacks, tonnage distribution in each pushback, and
minimum operational widths, among others

3.3 Method based on Artificial Intelligence

The two stages of the method based on Al are the following. Further detail can be found below as well.

Operational
cones

Pushback
Generation

©0

In this stage, a genetic algorithm is used to iterate over a
population of individuals. An individual is represented as a set
of operational cones.

In this stage, the K-Means clustering algorithm is utilized to
transform each individual generated by the GA, into a set of
pushbacks that complies with the operational constraints.
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3.3.1 GAs to generate optimize operational cones

In this section, we describe the main components of the genetic algorithm. To represent the algorithm
solution satisfying the design constraints mentioned before in the CPIT+ problem, operational cones were
used (Navarro 2015). The angle of the cone is the global slope angle. It is a truncated cone; therefore,
its base has the operational space given by the radius r, which is an input (Figure 3(b)). Notice that given
a block b, there is a unique operational cone that we denote as C(b) so that b is the center of its base.

The algorithm can generate a cone from each block centroid, and the number of cones that we will get
depends on the population size that we initially set for the GA. The population is randomly initialized.

3.3.1.1 Representation of individuals

As each operational cone is defined by the block centroid, its representation corresponds simply to the
block ID number; the block ID is a unique integer calculated from the block model, and allows the spatial
position of each block to be identified.

An individual in the GA is represented as a set of block centroids (bases of the cones). Figure 3(a) shows
an individual constituted by four block centroids, I = {10, 51, 60, 90}. Each individual can have variable
lengths.

L / 111 ' b I —
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Figure 3  (a) Representation of an individual in the GA (plan view) (b) operational cone with a given cone center
3.3.1.2 Fitness function

Evaluating the objective function NPV would be very time consuming because it would require optimized
scheduling of the blocks of an individual. Because of this, we used an approximation of the NPV that
emulates the best case used in some planning software tools for open pit, as described next.

Given an individual I = (i, i, I3,...I), where i, are IDs of the blocks, we computed the corresponding
operational cones C(iy), C(i,), ..., C(i,), then the blocks present in the individual (bases of the cones) are
clustered using K-means algorithm (more information in section 3.3.2). After that, increments C, = C(i,),
C, = C(iy) - C(iy), ..., C, = C(i,) - C(i,, ) are computed.

We then assumed that the increments were extracted in order (i.e. C, is finished before extraction of
C,.. begins). The extraction of blocks is done bench by bench, and the pass from one period to the next
occurs when the capacity is reached, i.e., we keep track of the tonnage of blocks and consider that a
period was ended when the capacities of that period are depleted.

The fitness of the individual is then the approximated NPV computed using the procedure described
above. Notice that because of the increments, there is no double counting of blocks.
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3.3.1.3 Selection

For this work, we implemented roulette selection, which works by assigning a probability to each individual
in the population, which is proportional to its fitness. That is, if the population has fitness values (g1, g2,
... gn) (Which are required to be non-negative), then the probability to pick one individual for crossing is:

gi
[ 7
EL @)

3.3.1.4 Genetic operators

Crossover. This consists of selecting two individuals known as parents to exchange segments
of their genetic code, producing offspring, which are combinations of their parents.

P1 = {10, 51, 60, 90} P2 = {10, 25, 41, 62, 87, 90}
h1 = {10, 90} h2 = {25, 41, 51, 60, 62, 87}

In this case, the first offspring (h1) will have the common elements of both parents (P1) and
(P2), while the second offspring (h2) will maintain elements that are not common between
their parents.

Mutation. This consists of adding or removing an element from the individuals. This process
is carried out randomly. If crossover proceeds successfully, one or both offspring will mutate.

3.3.2 Using K-Means to generate pushbacks

As previously explained, each individual of the GA is a set of blocks, representing bases of operational
cones. While it would be possible to interpret each cone as a phase, this is too constrained: there may be
too many phases and there may be redundancies.

Because of the above, to generate more realistic pushbacks and to control their number, the methodology
applies the K-Means method to cluster the blocks. The clustering process works in parallel with the GA,
clustering the blocks of each individual in pushbacks. These may consist of one or more operational
cones.

The output of the GA and the K-Means process will be the best individual with their respective pushback.

4 Numerical experiences

The methods presented above were tested in two case studies: Iron_bm and McLaughlin (MCL for short).
Table 1 provides a summary of both cases.

Table 1 Summary of case studies

Case study Ore Number of blocks Block size
nx ny | nz (m)
Iron_bm ke 160 120 | 46 25x25x15
MCL Au 139 295 67 7.62x7.62x6.1
41 Final Pit computation

The economic value is computed using the equation (8) for an ore block and equation (9) for a waste
block, with y, being the ore grade of block b, and ton, the tonnage of the block.
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Pv, = (P — SC)Rypton, — (MC + PC)ton, (8)
Wy, = —(MC)ton,

Where:
R = the metallurgical recovery.
P = the metal price.
SC = the selling cost.
MC = the mining cost.
PC = the processing cost.

Table 2 shows some of the parameters used for the economic block evaluation and the final pit calculation.
Results in terms of total perceived value and final pit size for both case studies are shown in Table 3.

Table 2 Parameters to generate nested pits from Iron_bm and MCL
Parameters Slope | Metallurgical | Metal price | Selling cost | Mining cost | Processing
angle recovery cost
Symbol 0 R P SC MC PC
Value | (Iron_bm) | 45° 0.92 18 29 (USD/ 2.70 (USD/ | 10.85 (USD/
(USD/ton) ton) ton) ton)
Value (MCL) 45° 0.76 1,100 (USD/ | 100 (USD/ | 1.50 (USD/ 8.20
ozt) ozt) ton) (USD/ton)
Table 3 Final pit results for Iron_bm and MCL
Case study Economic Value (MUSD) Number of blocks
lron_bm 21,000.21 167,612
MCL 3,043.32 254,398

In both cases, all blocks not included in the ultimate final pit were removed from the set and not considered
in the subsequent steps.

4.2 Application of the traditional methodology

4.2.1 Nested Pits

Nested pits are generated by scaling the metal price of the block using a revenue factor RF, which takes
values between 0 and 1, with a defined step. For the Iron_bm case, 52 nested pits were generated, with
RF from 0.48 to 1.0 and a step of 0.01. Figure 4(a) shows a section view of the pits, and in Figure 4(b),
the pit-by-pit graph plots the cumulative economic value and tonnage (ore and waste) for each pit.

1458



MassMin2020

Pit by pit
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Figure 4  (a) Section view showing nested pits from Iron_bm model (b) pit-by-pit graph from Iron_bm model

For MCL, 87 pits were generated with RF from 0.13 to 1.0 and a step of 0.01. Figure 5(@) presents a

section view of the pits, and Figure 5(b) shows the cumulative tonnage (ore and waste) and values for
the pits.

b Pitby pit
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Figure 5 (a) Section view showing nested pits from MCL model (b) pit-by-pit graph from MCL model

4.2.2 Pushback selection

Once nested pits were generated, they are clustered to create pushbacks, which are used as a guide for
the subsequent design. Pushbacks will be scheduled for their extraction over time.

Section views and a pit-by-pit graph are used as a reference to identify candidates for pushbacks. Selected
pushbacks try to fulfill certain criteria:

1. Minimization of the difference in terms of tonnage and value between selected pushbacks in
order to control the gap problem (Meagher et al. 2014).

2. Similar stripping ratio (waste/ore) between pushbacks, to meet plant constraints and requirements.
3. Pushbacks with a minimum mining width to allow access and mobility of mining equipment.

The number of pushbacks for both methodologies is the same to warrant a fair comparison. In Figure 6,
the pit- by-pit graph shows each pushback selected, highlighted in a different color.
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a Pit by pit b Pit by pit
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Figure 6 (a) Pit-by-pit graph with each pushback selected from the Iron_bm model (b) pit-by-pit graph with
each pushback selected from the MCL model

4.2.3 Production scheduling (Traditional)

A production schedule known as phase-bench-destination was generated for each case study. Table
4 shows the implemented constraints for both cases: mine capacity, plant capacity, and min/max lead
parameters. The min/max parameters refer to the minimum and the maximum difference between
consecutive pushbacks. The objective function is to maximize NPV with a discount rate of 10% for
Iron_bm and 15% for MCL.

Table 4 Production scheduling Parameters

Case study Mining Plant Min Max | GAP (%)
capacity (Mt) | capacity (Mt) | Lead Lead
lron_bm 150.00 25.00 3 5 5
MCL 9.00 4.00 3 5 5

The results obtained were for NVP = 3,976.45 MUSD for the Iron_bm model and NPV = 852.79 MUSD
for the MCL model. The scheduling process was solved with a default optimality gap set to 5% for both
cases.

4.3 Application of the Al methodology
4.3.1 GA for the generation of operational cones

The parameters used for Al methodology are shown in Table 5. The genetic algorithm process will
start by choosing a population size. It represents a set of initial individuals and is randomly created.
The generations correspond to the number of iterations of the GA process, and the MUTPB and CXPB
represent the mutation and crossover probability, respectively. These parameters follow a series of
sensitivity analyses that balanced computational time with the results obtained. The global angle comes
from the final pit definitions.
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In the case of the design parameters for the Iron_bm case, we considered a radius r = two blocks and for
MCL a radius r = four blocks, which will correspond to the base size of each pushback. These parameters

were chosen considering block sizes and potential equipment dimensions.

Table 5 Parameters of the Genetic Algorithm
Algorithmic parameters Design
Parameters
Case study | Population Size Generations MUTPB CXPB | Global Angle (°)
lron_bm 100 200 0.2 0.6 45
MCL 100 150 0.2 0.7 45
4.3.2 Pushback generation using K-Means

The clustering process utilized the K-Means algorithm. This requires a pre-set “k” value for clustering the
population into groups, which will represent the number of pushbacks. A number of iterations is also
required to complete the clustering process and is equal 30 for both cases.

To determine the correct number of clusters “k”, an analysis known as the elbow method was initially
performed using the SPSS statistical software. We plotted a line chart of the error of squared sums (SSE)
for each value of k (Figure 7(a) and Figure 8(a)). The elbow on the graph is the value of k that represents
the best number. It was not necessary to select a larger K size because the difference in the decrease of
the error is minimal and not considered significant (Purnima & Arvind 2014).

Additionally, a graphical analysis was performed (Figure 7(b) and Figure 8(b)) to plot the behavior of the
NPV and each value of "k".

a b

SSE vs. Number of Clusters NPV variance vs. Number of Clusters
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Figure 7  (a) Elbow method for optimal cluster selection (b) NPV behavior based on the cluster number for the

Iron_bm model

As a result of these analyses, the number of pushbacks (clusters) was 5 for Iron_bm and 4 for MCL
because these were the best options in terms of tonnage distribution, symmetry and value.
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Figure 8 (a) Elbow method for optimal cluster selection (b) NPV behavior based on the cluster number for the
MCL model

4.3.3  Production scheduling (Al)

For each case study, the phase-bench-destination production schedule was generated. The applied
parameters were the same as the traditional methodology (Table 4) so that valid comparisons could be
made between methodologies.

The results obtained were NVP = 856.34 MUSD for the Iron_bm model and NPV = 675.89 MUSD for the
MCL model.

5 Analysis and discussion
5.1 Comparison of Pushbacks

The results for each methodology in the Iron_bm case are shown in Figure 9. The resulting pushbacks
for each methodology look geometrically different. In the traditional methodology, there is a tendency
to create large initial pushbacks and small final pushbacks. As this method does not consider design
constraints, Figure 9(a) and Figure 10(a) show that the last three pushbacks do not have minimum
operative width, and as a result, these pushbacks could be operationally unfeasible.

aj Phases b Phases
5.00 4.00 3.00 2.00 1.00 500 4.00 3.00 2.00 1.00

i

Figure 9  Section view showing resulting pushbacks for Iron_bm model from (a) the traditional methodology
and (b) the Al methodology

For the traditional methodology, pushback 2 is bigger than the other pushbacks. When comparing
pushback 2 with pushback 4 (the smallest one), the first is 93.24% larger and does not meet with the
difference minimization requisite criteria in terms of tonnage between pushbacks.
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Figure 6(a) shows a tonnage increment between successive pits. This increment represents a gap problem
with significant volume and value increases. The traditional methodology did not allow us to solve the
gap problem because it was not possible to find an RF number to generate intermediate pits. As a result,
pushback 2 has a single nested pit.

In Figure 9(b) and Figure 10(b), the resulting pushbacks show that through Al methodology, it is possible
to divide the biggest pushback (pushback 2) into smaller ones. It also shows better symmetry among the
remaining pushbacks, and as far as design constraints, operational widths were also successfully achieved.

a Phases b Phases
5.00 4.00 3.00 ___2.00 1.00 5.00 4.00 3.00 2.00 1.00

3

Figure 10 Plan view showing resulting pushbacks for Iron_bm model from (a) the traditional method and (b) the
Al method

Table 6 shows the tonnage quantity of each pushback. In the particular case of the Iron_bm model,
it has a higher percentage of waste because of a high stripping ratio in the first years. The amount of
waste material is greater than the amount of ore, which will make it expensive to mine in the first years.
With the traditional methodology, the waste tonnage represents 83.04% of the total, while with the Al
methodology, it represents 83.85% of the total.

For the MCL case study, the resulting pushbacks are shown in Figure 11. In the traditional methodology
(Figure 11(a)), some end areas do not have enough width to become operational; as early as the second
pushback, the operational width decreases considerably. Due to the geometry of the deposit, it is
difficult to achieve operational pushbacks using nested pits methodology. In the case of the proposed
Al methodology, pushbacks look operationally feasible (Figure 11(b)). Both precedence constraints and
minimum width constraints are achieved in each pushback.

Table 6 Results of tonnage in each pushback by methodology for Iron_bm case

Methodology Traditional Al

Pushback Plant Waste Total Average Plant Waste Total Average
Tonnage | Tonnage | Tonnage | grade (%) | Tonnage | Tonnage | Tonnage grade

(Mt) (Mt) (Mt) (Mt) (Mt) (Mt) (onz/t)

1 123.08 291.44 414.51 0.73 76.28 | 1,015.88 | 1,092.15 0.78

2 396.24 | 2,028.52 | 2,424.76 0.75 12297 | 1,367.33 | 1,490.29 0.68

3 67.08 372.02 439.10 0.69 112.61 257.30 369.91 0.71

4 20.83 143.04 163.87 0.68 65.81 61.68 127.50 0.74

5 28.66 277.87 306.54 0.64 217.39 | 389.24 606.63 0.75

Total 635.89 | 3,112.89 | 3,748.77 0.70 595.05 | 3,091.42 | 3,686.47 0.73
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a Phases b| Phases
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e

Figure 11 Section view showing resulting pushbacks for MCL model from a) the traditional method and (b) the
Al method

Table 7 shows the ore and waste tonnage distribution between the pushbacks. With the traditional
methodology, 2.78% more ore tonnage is extracted than with the (Al) methodology. In both cases,
distribution and symmetry look acceptable.

5.2 Comparison of production plans

Table 8 shows a summary of the NPV results obtained from both methodologies through scheduling by
phase-bench-destination. In the first case study, NPV resulting from the (Al) methodology represents a
far smaller percentage than NPV resulting from the traditional methodology.

Table 7 Results of tonnage in each pushback by methodology for MCL case

Methodology Traditional Al

Pushbacks Plant Waste Total Average | Plant Waste Total Average
Tonnage | Tonnage Tonnage | grade (%) | Tonnage | Tonnage | Tonnage grade

(Mt) (Mt) (Mt) (Mt) (Mt) (Mt) (onz/t)

1 57.16 19.70 76.86 0.07 61.07 42.66 103.73 0.05

2 45.15 29.31 74.46 0.04 51.56 42.25 93.81 0.04

3 20.75 24.67 45.42 0.03 10.25 19.42 29.67 0.04

4 14.05 46.73 60.78 0.02 10.91 15.05 25.96 0.05

Total 137.11 120.41 257.52 0.04 133.79 | 119.38 | 253.17 0.05

In the second case study, MCL, NPV differences between both methodologies exist. The NPV obtained
through Al is 20.74% lower than the result obtained from the traditional methodology. In both case
studies, the NPV obtained from Al methodology was lower than the traditional one.

Table 8 Summary of the NPV results obtained through the different methodologies

Iron_bm MCL

NPV Periods Ore Waste NPV Periods Ore Waste
Methodology (MUSD) | (Years) (Mt) (Mt) (MUSD) | (Years) (Mt) (Mt)

Traditional | 3,976.45 42 635.89 | 3,112.89 | 852.79 40 13711 | 120.41
Al 856.34 38 595.05 | 3,091.42 | 675.89 34 133.79 | 119.38

The production plans are presented in Figure 12. For Iron_bm, the traditional method shows an early
ore tonnage extraction starting in the second year (Figure 12(a)). This is not the case for the Al method,
which prioritizes waste extraction in the early years. As we can see in Figure 12(c), ore extraction starts
in the fifth year.
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For the MCL model, the production plan obtained using the traditional method (Figure 12(b)) and Al
method (Figure 12(d)) start the ore tonnage extraction in the first year. The results obtained with the Al
method show uniform behavior in terms of value and ore tonnage, ensuring a continuous ore supply for
the processing plant.
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Figure 12 Comparison of production plans between (a) the traditional method for Iron_bm (b) the traditional
method for MCL (c) Al method for Iron_bm (d) Al method for MCL

6 Conclusions

In this paper, Al was used to obtain operative pushbacks in open-pit mines, respecting operational and
design constraints. The model works through a genetic algorithm and a clustering algorithm. These
algorithms can solve combinatorial optimization problems. The proposed approach was applied in two
large-scale mines, which are geometrically and mineralogically different. It proves to be applicable in both
cases, and it was demonstrated that the size of the models is not a limitation.

A numerical study was performed to compare the solutions obtained between the traditional methodology
and a methodology using Al. There are four main advantages of using Al. First, the pushbacks generated
by Al do not require manual selection, as in traditional nested pit methodology. This is an advantage
because the success of manual selection depends on the expertise of mine planner. In this way, Al can
reduce process time in terms of generating pushbacks. Second, the Al method was able to produce
smaller pushbacks and minimize the tonnage differences among the pushbacks, thus helping to avoid
the gap problem. Third, the size of the block model is not a limitation. Finally, the pushbacks obtained
using Al meet with minimum operational constraints, so in subsequent steps, the pushbacks will be
operationally more feasible. On the other hand, pushbacks obtained through the traditional methodology
show a more significant challenge to being operative.

One important difference in comparing the traditional and Al methodologies was found in comparing
NPV Better results for NPV were achieved with the traditional method in both case studies; however,
it is important to remember that the production plan of Al prioritizes waste extraction during early
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periods. Then, during the first periods, a high percentage of the total tonnage mined is waste. In fact,
NPV would be higher if ore blocks could be extracted during the early periods. Another reason for this
variance in terms of NPV is that the Al methodology incorporates more constraints than the traditional
one. Finally, without operative designs, the output is almost always overly optimistic: overestimating ore,
and underestimating waste; these discrepancies should be reflected in a decreasing NPV in post-design
production plans.
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