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Abstract. Uncertainty has been a main topic in mine planning research during 

the last decade. Several models have been proposed to address and incorporate 

the uncertainty in the strategic mine planning process, to generate a better, more 

profitable plan even in adverse conditions such as geological or metal price 

uncertainty. Among these models, in the general two-stage approach, the 

extraction is usually the first stage decision while processing considers the 

uncertainty as a second stage decision. Another option is to minimize 

deviations from production targets (ore, average grade, contaminants) 

considering the uncertainty in the grade of the deposit, or the risk-averse 

approaches where some risk measure is introduced to minimize the losses in 

unfavorable scenarios. However, it is not clear how these models perform 

comparatively since they often consider the uncertainty in a fundamentally 

different way, with different objectives functions, constraints and uncertainty 

modeling. Therefore, there are no general guidelines under which conditions 

some approach is better than other. For this reason, this works aims to compare 

two of these proposed models (two-stage and minimization of deviations) 

under the same conditions, to verify the advantages of each one of them and 

generate recommendations about the applicability of these approaches. This 

comparison is performed considering the production plan, the distribution of 

the Net Present Value, the total deviations from the target, among other 

indicators. 
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1   Introduction 

Strategic mine planning must gather and incorporate several sources of information: 

geology, geomechanical stability, financial, mineral processing, environmental, and 

others. These factors are often not well defined since they generally involve future 

behaviors, or their complete characterization is excessively expensive, such as, 

financial or equipment factors or geological factors, respectively. Therefore, the 

planner has to rely on estimation of these parameters to obtain the best production 

schedule possible for the mine operation. There is, however, no guarantee that these 
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estimations will be correct, or even acceptable, when the mine operation is in progress. 

Bad estimation of some parameters could potentially lead to significant economic 

losses, which is highly detrimental for the mining project. Moreover, it could lead to 

wrong investment decision, which are very difficult to modify [1]. 

The incorporation of uncertainty during the strategic mine planning process has been 

a major topic of discussion in the last decade towards ensuring that the strategic 

decisions, such as, mining sequencing, equipment fleet investment and metal 

production per period consider the uncertainty during the process [2]. Since the 

deterministic approach in strategic mine planning is based on operational research 

techniques [3], the incorporation of uncertainty has followed the same approach, using 

stochastic optimization models to control the uncertainty. 

Depending on the type of uncertainty selected to be addressed and how it is modeled, 

there has been a wide range of approaches to-date. Specifically, for geological 

uncertainty, the traditional practice has been the use of a single estimate, based on a 

kriging technique, with the kriging variance as a measure of precision of such 

estimation. However, it has been shown that, in some cases, the use of a single kriging 

estimate generates a production plan that is not achievable in the mine operation both 

in production targets and economical value [1]. More sophisticated techniques, such as, 

geological simulation, rely on a different paradigm: they produce various possible 

scenarios, where a single block have a range of possible outcomes showing the local 

variability seen in real deposits. The use of stochastic techniques allows the mine 

planner to consider these different geological scenarios during the optimization process 

to obtain a reliable plan with a good performance for each simulation. 

As there is no a unique approach to incorporate the uncertainty in the evaluation, 

various optimization models have been proposed based on different concepts of the 

strategic mine planning problem and the impact of the uncertainty.  For example, the 

robust and risk averse approaches focus on obtaining a plan with an acceptable 

performance in the worst-case scenario to assure a minimum revenue with certain 

probability or minimizing a risk measure of the schedule [4][5][6].  In the neutral-risk 

approaches, typically, an expected value over the different scenarios is optimized and 

no special weight is given to the bad outcomes.  

The advantages and disadvantages of these models are not clear and there are no 

guidelines about which model ought to be used under certain conditions and which 

produces a higher value, a more reliable plan or other advantage to the mining 

operation. 

This work focuses on comparing the performance of two risk-neutral stochastic mine 

planning models. The first model is based on the minimization of the deviations from 

the production targets across every scenario and it was proposed in [7] and [8]. They 

obtained a single mining sequence that incorporated the uncertainty as a penalty for not 

meeting the production targets in each geological scenario. This penalty was introduced 

as a cost in the objective function and the schedule aimed to maximize the expected 

value of the extraction while minimizing the deviations from the targets. This original 

formulation was extended to different cases: pushbacks selection under geological 

uncertainty incorporating penalties [9], mine design optimization based on simulated 

annealing [10] and joint multi-element uncertainty for an iron deposit [11]. More 

recently, this approach was applied in mining complexes with multiple processing 

streams and transportation alternatives with blending constraints using metaheuristics 



such as simulated annealing and particle swarm optimization to obtain a solution [12] 

[13]. The results showed that this kind of formulation generates schedules with a lower 

deviation chance from the actual targets, with larger optimal pit limits and with NPV’s 

up to 25% higher compared to the deterministic optimization techniques. 

The second model is a multistage stochastic programming model proposed in [14]. 

This model defined different decision stages based on the information available about 

the uncertain parameters. In each stage, the decision made depended on the previous 

decisions, the information already gathered and the probability distribution for the 

future outcomes. The multi-stage approach proposed in [14] considered different 

geological scenarios and incorporated extraction and processing decision that could be 

modified in each period of the scheduling. The complexity of this model, however, 

forced the aggregation of blocks and scenarios to obtain a solvable problem. A similar 

approach was taken in [15] with a two-stage approach, where the first stage was the 

extraction decision for each period and the second stage decision was the destination of 

each block which was different for each geological scenario, considering that in the 

short-term the blasthole information allowed the modification of the processing 

destination. This model was solved using a modified version of Bienstock -Zuckerberg 

algorithm [16] and a Toposort heuristic [17]. Another two-stage model was also 

proposed in [18], but the first and second stage were defined based on the availability 

of the blasthole information in the short-term to evaluate the effect of gathering this 

information in advance. These models achieved higher NPV’s in comparison to the 

deterministic optimization, which ranged from 1% up to 10% depending on the case.  

2   Methodology 

2.1   Minimization of Deviations 

As different models can be used to minimize deviations from the production 

targets, in this paper, the variant found in [19] with a single mine, a single element and 

without blending constraints was used in the analysis.  

 

Definitions and assumptions. Let B be the set of blocks, R the set of Resources, T the 

set of periods and S the set of geological scenarios. Let’s define v̅bt as the expected 

value obtained if block b ∈ B is extracted at period t ∈ T, rbs the resource r ∈ R of block 

b ∈ B considering simulation s ∈ S, and Cr
u/l

 as the upper and lower targets for resource 

r. The deviation cost from the upper or lower targets for resource r ∈ R in scenario s ∈ 

S is defined as crs
u/l while f t as the orebody risk discount rate.  

 

Function formulation. The decision variables for this model are: 

 

 

 
xbt {

1 if block b ∈ B, is extracted at period t ∈ T
0 otherwise

  . (1) 

 drst
u/l

= deviation from target Cr
u/l

 in scenario s at period t .   (2) 



 
max   ∑ ∑ v̅btxbt +

t∈Tb∈B

∑ ∑ ∑ f t drst
u/l

 crs
u/l

  .

r∈Rt∈Ts∈S

 (3) 

 

s. t. 
∑ rbsxbt + drst

l ≥ Cr
l

b∈B

 ∀t ∈ T, s ∈ S, r ∈ R . (4) 

 ∑ rbsxbt − drst
u ≤ Cr

u

b∈B

 ∀t ∈ T, s ∈ S, r ∈ R .  (5) 

 
∑(βbs − Cβ

l )αbsxbt + dβst
l ≥ 0

b∈B

 ∀t ∈ T, s ∈ S, α, β ∈ R .  (6) 

 
∑(βbs − Cβ

u)αbsxbt − dβst
u ≤ 0

b∈B

 ∀t ∈ T, s ∈ S, α, β ∈ R . (7) 

 

xit ≤ ∑ xjp

t

p=1

 ∀t ∈ T, j ∈ 𝒫(i) . (8) 

 
∑ xbt ≤ 1

t∈T

  ∀b ∈ B . (9) 

 

Equation (3) is the objective function. The first term addresses the maximization of 

the expected NPV of the extraction, while the second term discounts the deviation costs 

for every resource considered. The factor 𝑓 discounts the value from deviations at 

different periods to introduce a geological risk profile on the schedule. Equations (4) 

and (5) represent the capacity deviation constraints for upper and lower targets, such as 

mining and processing limits. Equations (6) and (7) are blending deviations constraints, 

such as, target metal grade or limits for contaminants. Equation (8) represents the 

precedence constraint to maintain the order in the extraction, where 𝒫(i) is the set of 

predecessors for each block i. Finally, equation (9) is the unicity constraint, where each 

block can be extracted only once.  

This formulation is not exactly the same as the one proposed in [19] since the 

formulation in [19] incorporated dummy constraints to balance the deviation 

constraints. However, the results are indeed equivalent without those variables and 

imposed inequalities in the deviation constraints. 

2.2   Two-stage stochastic mine planning scheduling 

The proposed two-stage stochastic model is based on [15]. The first stage decision 

considers only the extraction of each block, imposing the same schedule for every 

geological scenario. The second stage decision selects the best destination for each 

scenario, aiming to maximize the NPV and fulfil the processing constraints. This two-

stage decision framework is similar to the actual mining operation, where the 

destination decision can be changed in the short term. This model considers that the 

flexibility to make the long-term scheduling decision to obtain a higher NPV compared 

to the deterministic scheduling framework.  



 

Definitions and Assumptions. Let B be the set of blocks, R the set of Resources, T the 

set of periods and S the set of geological scenarios. Let’s define c̅bt as the extraction 

cost of b ∈ B at period t, rbds the resource r ∈ R of block b ∈ B considering simulation 

s ∈ S if the block is sent to destination d ∈ D associated with the second-stage decision, 

and  rc̅ as the resources scenario-independent, associated with the first stage decision. 

Upper target for resource r is defined as Cr
u and the pbtds is the profit obtained if block 

b ∈ B is sent to destination d ∈ D in scenario s ∈ S at period t ∈ T.  

 

Model formulation. The decision variables of this model are: 

 

 xbt {
1 if block b ∈ B, is extracted at period t ∈ T

0 otherwise
 . (10) 

ybtds = fraction of block b sent to destination d at period t in scenario s . (11) 

max   ∑ ∑ c̅btxbt +

t∈Tb∈B

1

|S|
∑ ∑ ∑  pbtds ybtds .

d∈Dt∈Ts∈S

 (12) 

 

s. t. 
∑ r̅bxbt ≤ Cr

u

b∈B

 ∀t ∈ T, s ∈ S, r ∈ R . (13) 

 ∑ ∑ rbds

d∈D

ybtds ≤ Cr′
u

b∈B

 ∀t ∈ T, s ∈ S, r ∈ R .  (14) 

 
xbt = ∑ ybdts

d∈D

 ∀t ∈ T, s ∈ S, b ∈ B . (15) 

 

xit ≤ ∑ xjp

t

p=1

 ∀t ∈ T, j ∈ 𝒫(i) . (16) 

 
∑ xbt ≤ 1

t∈T

  ∀b ∈ B . (17) 

 

Equation (12) is the objective function. The first term represents the cost of 

extraction while the second term is the expected profit obtained for processing decisions 

considering every geological scenario. Equation (13) represents the capacity constraints 

for the extraction, such as mining capacity. Equation (14) represents the capacity 

constraints for the processing of each block, associated with the second-stage variable. 

Equation (15) states the relation between x and y variables; a block can be processed 

only if it was extracted and every fraction of the block was processed. Equation (16) 

represents the precedence constraints while Equation (17) the unicity constraints. 

2.3   Comparison 

Both models were implemented for the evaluation of the same deposit to obtain 

mining schedules under uncertainty. From these schedules, performance indicators 



were calculated, such as, total ore and waste tonnage. In addition, a comparison 

between the different extraction decision was performed to evaluate if different 

approaches would lead to different final pits. 

The production plan was compared considering the deviations from the production 

targets for each scenario and the average ore and waste for each model, to evaluate the 

mining and processing profile in each period. 

An economic analysis was performed aiming to respond how these different 

methodologies achieved a higher NPV as compare to the traditional case. 

3   Results 

The study case was a copper porphyry deposit with 14,800 blocks. The scenarios 

were obtained using sequential gaussian simulation on point support and later a reblock 

was performed to obtain the final block size. The scheduling and economic parameters 

for both cases are shown in Tables 1 and 2. 

 

Table 1. Economic Parameters   Table 2. Scheduling Parameters 

Mining Cost 1.0 US$/Ton 

Processing Cost 10 US$/Ton 

Deviation Cost 0.1 US$/Ton 

Selling Cost 0.5 US$/lb. 

Cu Price 1.5 US$/lb. 

Cu Recovery 90 % 

Discount Rate 10 % 

3.1   Scheduling Results 

Table 3 shows a comparison of the value and the final pit for each model, with a 

deterministic schedule with the same parameters as reference. As expected, both 

stochastic models achieved a higher NPV compared to the deterministic schedule. The 

difference between both models was small, both in terms of expected NPV and total 

tonnage, with the deviations model obtaining a larger and slightly more profitable final 

pit. Fig. 1 shows a plan view of the schedules. The stochastic models generated a larger 

pit compared to the deterministic case, but the mining sequence was similar among 

them. 

 

Table 3. Reserves for each model 

 
Total Tonnage 

[MTon] 

Reported NPV 

[US$] 
NPV increase 

Deviations 27.48 52,912,742 0.81% 

Two-Stage 26.48 52,859,761 0.71% 

Periods 5   

Scenarios 10  
Mining 

Capacity 
5.5 MTon/period 

Processing 

Target 
4 MTon/period 



Deterministic 23.85 52,487,241 - 

 

 

 

 

Fig. 1. Plan view of the schedules for different models. From left to right: Deviations, Two-

Stage, Deterministic 

For a better visualization of the differences between both stochastic models, Fig. 2 

shows the final pit limits with a color scale aimed to highlights the sequencing 

differences: the blue color represents the blocks that are extracted in the same period 

for both schedules; green color represents the blocks that are extracted in an earlier 

period in the minimization of deviations model, while the light blue represents blocks 

that are extracted earlier in the Two-stage model. Orange blocks are extracted only in 

the minimization of deviations schedule, while dark red blocks are extracted only in the 

Two-Stage schedule.  

 

 

Fig. 2. Comparison of sequences between the stochastic models 

 

The total magnitude of these differences is shown in Table 4, which shows the 

number of blocks for each category displayed in Fig. 2. The deviations model tended 

to extract more blocks earlier in the schedule. Also, it can be noticed that both schedules 

made different final pit decisions, with sets of blocks that are only extracted in one of 

the two models, which is an indication that both objective functions aimed for a 

different goal: minimizing the deviations in the first model and taking advantage of the 

change of destination policy in the second model, as it was detailed in Section 2.  

The average production schedules for both models is shown in Fig. 3. The production 

profile was similar for both models except in period four, where the deviations model 

shows a higher average ore production. The dispersion of the ore production for both 

models is similar, with the maximum and minimum ore produced close to the average 



value, even for the two-stage model, which does not attempt to minimize these 

deviations explicitly. The average difference between the processing target and the ore 

scheduled across every period is 884 kton for the deviations model and 913 kton for the 

two-stage model. Most of this deviation comes from the last two periods, since there is 

not enough ore to satisfy the production target. 

 

Table 4. Sequence differences between both stochastic models 

Category Number of blocks 

Same Period 6618 

Earlier in Deviations 949 

Earlier in Two-Stage 634 

Only in Deviations 441 

Only in Two-Stage 125 

 

 

 

4   Discussion 

The first relevant result is that both models achieve a higher NPV value compared 

to the deterministic schedule, with larger final pits limits as well, which was an expected 

result considering the related work. The magnitude of the NPV increase, however, was 

negligible for both models. The small increase could be related to the fact that this study 

case is a homogeneous copper porphyry with a single metal of interest.  For a similar 

study case with low uncertainty, a similar result was found in [15] using a two-stage 

mode, with a negligible NPV increase. For the deviations model, however, a larger 

NPV increase was expected considering the previous works, where the increases in 

value ranged between 5% and 25%. 

The final pit limits are similar for both models with a 95% of the reserves being 

common for both models while 80% of the blocks of the final pit are extracted in the 

Fig. 3. Production Schedules for Two-Stage model (left) and Deviations model (right) 



same period for both models. Therefore, both models generate a similar pit and 

sequencing even when the formulations shown in Section 2 are different.  

It is relevant, however, noting that the differences between the schedules reflect the 

different nature of both models. For example, Fig 2, Table 3 and Fig 3 show how the 

deviation model tends to extract the blocks in earlier periods compared to the two-stage 

models and how to process more mineral. This behavior is explained by the flexibility 

introduced by the deviations constraints, since they allow to extract blocks faster if the 

deviation cost is compensated with a higher revenue. When considering the discount 

rate of the profit function, processing a block in an early period is more profitable than 

processing the same block later. With this trade-off, the deviations model produces a 

more aggressive extraction profile in the first periods to take advantage of the lower 

discount rate.  

While the difference in NPV is negligible between both models, the difference in 

tonnage is not: the deviation model extracts 5% more ore and 3.8% more tonnage than 

the two-stage model. This difference is explained by the different formulations. The 

deviations model aims to extract a higher amount of ore to minimize the deviation cost, 

while the two-stage model extract less ore but with similar value, since the objective 

function only considers the maximization of the expected NPV. The higher amount of 

ore could be beneficial depending of the strategic business model of the operation. 

The analysis of the production schedules reveals that the deviation models surpass 

the processing targets in some scenarios at periods 1 through 4. While a minor excess 

of ore is manageable, in the short term, a surplus of mineral in every period generates 

additional handling cost, with an impact on the final NPV. On the other hand, every 

scenario fulfills the maximum processing capacity in the two-stage model, where the 

ore target is a hard constraint in the model.  

Finally, it is important to mention the selection process of the deviation cost. While 

the two-stage model does not introduce additional parameters for the schedule, the 

deviation model requires an additional discount rate and deviation costs for every 

resource considered. While the literature considers these as control parameters, as a 

way to introduce the risk profile of the mining engineering on the schedule, the decision 

of the best deviation cost and discount rate is not trivial. For tonnage deviations, the 

costs used on previous works range from 2 US$/unit [7] to 10000 US$/unit [19]. For 

this work, a trial-and-error approach was used, trying to achieve a higher NPV with 

acceptable deviations, but this selection depends strongly on the study case. A deeper 

study of the impact of this cost and a recommended methodology to select it is 

necessary for future works. 

5   Conclusion 

The stochastic models compared in this work achieved similar NPV values for this 

study case but emphasizing different extraction strategies. Recommendations of which 

model is suitable depends on the strategic business plan since the deviations focused on 

processing more while the two-stage model focused on higher value. Both models 

achieved a higher value compared to the deterministic case, showing the advantages of 

stochastic frameworks in strategic mine planning. However, the increase was small in 



this study case. A comparison of these models in different, more complex orebodies is 

recommended, to address their differences in a more challenging scenario. 
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