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1 Introduction

In open-pit mines, mineral is reached by digging material from the ground and then
either processing or depositing it on stockpiles for later processing while waste
material is deposited on dumps. To define which part of the mine should be extracted
at each period of the lifetime of themine, the terrain ismodeled as a three-dimensional
array of regular blocks and the planning horizon is discretized into time periods. For
each block, estimations on the ore content, density, and other relevant attributes are
constructed by using geostatistical methods [1].

The set of all blocks and their attributes form the so-called block model. Hence
for each block, it is possible to specify: an extraction period, and a destination for
processing, defining a block scheduling. The final value of a mine is, therefore,
determined by the set of attributes and the block scheduling. The feasibility of a
block scheduling for the open-pit method depends on accessibility and extraction
constraints.

The extraction process must ensure the stability of the walls, which is expressed
in terms of slope angles that must be satisfied at each moment (slope precedence
constraints) as it follows the sequential extraction of blocks. In addition, there are
certain limitations that are inherent to the process, for example, the amount ofmaterial
to be transported and processed during each period is subject to lower and upper
bounds given by transportation and plant capacity, respectively, which are usually
expressed either inmaximumtonnageor timeavailable for transportingor processing.
There exist other optional constraints (named general side constraints) that should
be applied, including: (i) blending constraints, because the efficiency, feasibility (or
even for regulatory reasons) of the plant process depends on the attributes of the
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combination of blocks that are processed at a given period and (ii) maximum vertical
advance, among others.

Depending on the number of considerations included in the production scheduling
model, Espinoza et al. summarized three specific problems [2]. First, the simplest
problem in open-pit mine production planning is called Ultimate Pit (UPIT) Limit
Problem and includes the selection of a subset of blocks that contains the maximum
undiscounted value under slope precedence constraints. The time is not considered
in this problem. Second, a generalized extension of the ultimate pit limit problem is
the Constrained Pit Limit Problem (CPIT). This model incorporates temporal dimen-
sion, scheduling blocks for extraction over a fixed number of periods, maximizing
discounted value under both slope precedence and capacity constraints, in which
block destinations are fixed in advance. The Precedence Constrained Production
Scheduling Problem (PCPSP) extends the last one mainly by considering multiple
possible destinations for the blocks (therefore the model decides which one is the
optimal choice) and respecting general side constraints, such as blending (where the
quality of processed material is controlled).

Currently, a number of mine planning software developers are implementing the
pseudoflow algorithm for UPIT (see [3, 4]) to compute both ultimate pit limit and
nested pits,whichwere demonstrated to bemore efficient thanLerchs andGrossmann
algorithm [5].

While several open-pit block scheduling instances were published in MineLib
[2], which presented good feasible solutions for CPIT and PCPSP by using the
TopoSort algorithm presented in [6], other authors have proposed new methods and
reported best-known solution when applied to CPIT instances of MineLib. Lamghari
et al. [7] proposed a method to improve an initial feasible solution based on a local
search algorithm called Variable Neighborhood Descent. Jélvez et al. presented an
aggregation/disaggregation heuristic to generate good feasible solutions [8]. Liu and
Kozan developed two new graph-based algorithms based on network flow graph and
conjunctive graph theory, classified as topological ordering-based methods as well
[9]. Samavati et al. outperform the TopoSort heuristic strengthening the LP relaxation
of CPIT and generating better expected extraction times [10]. A similar approach
was developed by [11]. Table 1 shows the best-known solutions for CPIT instances
on MineLib expressed in terms of optimality gap.

PCPSP was first studied by Bienstock and Zuckerberg [12], who proposed a
method based on Lagrangian relaxation to solve the linear relaxation of the PCPSP
and reported a substantial computation time improvementwith regards to the standard
LP solvers. Espinoza et al. [2] also applied theTopoSort heuristic to PCPSP instances,
but they did not generate a feasible solution on W23 (the only instance including
blending constraints). Kenny et al. [13] reported improved solutions for some PCPSP
instances by using a Greedy Randomized Adaptive Search Procedure, however the
improvements do not include a feasible solution for W23 instance.

Most of the real instances of the CPIT and PCPSP in the mining industry are
difficult to solve with block models containing large number of blocks for a time
horizon that can be as long as several decades. This paper focuses on PCPSP, a new
full-binary formulation and an improvement to the current best-known results for
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Table 1 Current best-known
solution on 11 CPIT instances
available in MineLib library

CPIT instance Source GAP (%)

Newman [10] 1.26

Zuck_small [11] 0.71

KD [11] 0.14

Zuck_medium [11] 5.24

P4HD [9] 0.08

Marvin [11] 0.64

W23 [9] 0.19

Zuck_large [8] 0.24

SM2 [7] 0.04

McLaughlin_lim [10, 11] 0.06

McLaughlin [8, 10, 11] 0.06

PCPSP instances on MineLib, which was made by means of a heuristic based on
both a sliding time window and a linear relaxation to preselect a small subset of
blocks to be scheduled within each time window. The approach includes blending
constraints in its solution.

2 Mathematical Modeling

In this section, the main notation and the mathematical formulation of the optimiza-
tion model used in this work are introduced. The formulation is referred to as the
open-pit block scheduling problem (OPBSP). The only difference from the PCPSP
is that the blocks cannot be split and sent to different destinations, hence this problem
is fully binary and not mixed. However, the solutions are feasible for PCPSP as well.

2.1 Notation

Let us consider a set of blocks B. The elements of B (the blocks) are denoted by
letters b, b′ unless otherwise stated. The set of periods is denoted by T , hence the
production is scheduled in periods t � 1, . . . , |T |. There exists a set of destinations
D (each destination is coded by a number, so the possible destinations for a block
are d � 1, . . . , D).

The net benefit perceived if a blockb∈B is sent to destinationd ∈D at time period t
is given by vbdt. The block values will be denoted by V (B, D, T ) � (vbdt)b∈B,d∈D,t∈T
or simply V if there is no ambiguity. We consider two sets of attributes, namely A
and Ã: A refers to the block attributes that participate in capacity constraints, like
tonnage while Ã relates to the attributes that are averaged (blending constraints),
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such as grades or pollutant contents. The value of attribute a ∈ A (or ã ∈ Ã) in
block b is denoted by gba (or hbã), where gba ≥0 (and similarly hbã ≥ 0) when
the attributes denote tonnage and concentrations. Some constraints are applied on
a subset of destinations δ ⊆D, for example, for processing. For each a ∈ A and
δ ⊆D, a minimum capacity (thus a demand) Laδt ∈ R and a maximum capacity
Uaδt ∈ R ∪ {+∞} are imposed. Similarly, for each ã ∈ Ã, minimum L̃aδt ∈ R and
maximum ˜Uãδt ∈ R ∪ {+∞} average values are allowed.

An attribute tonb representing the tonnage of block b is used as a weight for
computing averages. Due to stability requirements, slope constraints are given by
one or several slope angles that define the maximum slopes that are possible in pit
walls. The standard way to model these slope constraints is using precedencies as
follows: for any given block b, there exists a set of other blocks (called predecessors)
that must be mined before in order to gain access to block b. A very general way
to encode this is by defining a set of arcs P ⊂ B × B, where

(

b, b′) ∈ P means
that block b′ (predecessor of block b) has to be extracted in the previous or the same
period that block b (successor of block b′).

2.2 An Alternative Formulation for PCPSP Model: OPBSP

This subsection introduces a new formulation for PCPSP. The decision variables are
related to the decision of whether to mine or not a given block, when to do so, and
what destination is chosen for that block. The objective function is to maximize net
present value. The constraints considered are: structural (related to the nature of the
variables), precedence, capacity and general side (blending). For each block b ∈ B,
destination d ∈ D and period t ∈ T , the variable is defined in (1):

xbdt �

⎧

⎪

⎨

⎪

⎩

1 if block b is to a destination d ′ < d at period t,
or sent to any detination at some period t ′ < t.

0 otherwise

(1)

Tokeep the notation simple, auxiliary variables�xbdt representing the exact notion
of a block b sent to destination d at period t are defined:

�xbdt �

⎧

⎪

⎨

⎪

⎩

xbdt d � t � 1

xbdt − xbD(t−1) d � 1, t > 1

xbdt − xb(d−1)t d > 1

(2)

For a block model B, precedence arcs P, set of destinations D, set of time peri-
ods T , block values V � V (B, D, T ), sets of capacity C �C(B, A, D, T ) and
blending C̃ � C̃(B, A, D, T ) constraints, an open-pit block scheduling problem

OPBSP
(

B, P, D, V, T,C, C̃
)

is defined as
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Max
∑

b∈B

∑

d∈D

∑

t∈T
vbdt�xbdt (3)

subject to

xbDt ≤ xb′Dt ∀(

b, b′) ∈ P, t ∈ T (4)

�xbdt ≥ 0 ∀b ∈ B, d ∈ D, t ∈ T (5)
∑

b∈B

∑

d∈δ

gba�xbdt ≤ Uaδt ∀a ∈ A, δ ⊂ D, t ∈ T (6)

∑

b∈B

∑

d∈δ

gba�xbdt ≥ Laδt ∀a ∈ A, δ ⊂ D, t ∈ T (7)

∑

b∈B
∑

d∈δ hbãtonb�xbdt
∑

b∈B
∑

d∈δ tonb�xbdt
≤ Ũãδt ∀ã ∈ Ã, δ ⊂ D, t ∈ T (8)

∑

b∈B
∑

d∈δ hbãtonb�xbdt
∑

b∈B
∑

d∈δ tonb�xbdt
≥ L̃ ãδt ∀ã ∈ Ã, δ ⊂ D, t ∈ T (9)

xbdt ∈ {0, 1} ∀b ∈ B, d ∈ D, t ∈ T (10)

Equation (3) presents the objective function, which is the discounted benefit from
the extracted blocks over time horizon |T |. Equation (4) corresponds to the precedence
constraints given by the slope angle and Eq. (5) means that the definition of the
variables is satisfied. Moreover, Eqs. (6) and (7) limit the maximum and minimum
resource consumption in each period, respectively. Equations (8) and (9) represent
the blending constraints, and Eq. (10) establishes that all variables assume binary
values.

The main difference between PCPSP (as presented in [2, 12]) and OPBSP relates
to the fact that in OPBSP blocks cannot be split and thus a given extracted block is
sent to only one destination. However, OPBSP solutions are feasible for PCPSP as
well.

3 An Incremental Heuristic Based on Expected Time

Expected Time Incremental Heuristic (ETInc) is the proposed algorithm to approxi-
mate the solution of OPBSP and consists in a combination of an incremental heuristic
that works on a subset of blocks and periods by using a sliding time window (as in
[8]) plus expected extraction times computed from the linear relaxation of the prob-
lem as introduced in [6]. A more detailed version of this heuristic may be found in
[14].
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3.1 Incremental Heuristic Based on Sliding Time Window

The heuristic iteratively constructs a schedule for each period by solving the OPBSP
for a time window T̃ � {t, . . . ,min(t + w − 1, |T |)} limited to w ≤ |T | periods,
starting from period t �1 of the planning horizon, where w is an integer parameter
used to determine the maximum length of the time window. Each time the OPBSP
subproblem is solved, the variables xbdt are fixed for the firstw′ periods of the incum-
bent time window, where w′ is a parameter to be determined, the time window is
moved forward by w′ periods, and the OPBSP subproblem is solved for the new time
window. The procedure stops when the last OPBSP subproblem corresponding to
the period t � |T | has been solved.

3.2 Block Preselection Using Expected Extraction Times

To solve eachOPBSP subproblem, the heuristic preselects a subset B̃ of blocks based
on a modified definition of the expected extraction time introduced by [6] according
to the following procedure.

Let x̄∗
bDt be the solution of the LP relaxation of the original OPBSP. The expected

extraction time Eb of block b is defined as

Eb �
∑

t∈T
t · �x̄∗

bDt + (T + 1)
(

1 − x̄∗
bDt

)

(11)

A subset of blocks B̃ not yet extracted at period t is defined for which expected
time Eb is smaller than min(t +w −1, |T |) + s, where s >0 is a continuous parameter
to be determined representing a tolerance or additional margin in the selection. In
this procedure, the expected times are used as a block preselection tool to reduce the
size of the subproblems, they are not used to generate a sequence of blocks as in the
TopoSort heuristic proposed by [6].

3.3 Expected Time Incremental Heuristic—ETInc

ETInc algorithm depends on three parameters:

1. w, which is the length of the sliding time window,
2. w′, which is the number of periods to be fixed in the current solution of OPBSP

subproblem, where w
′ ≤w, and

3. s, representing the tolerance parameter to select a subblock model B̃ based on
expected extraction times.

The main steps of the ETInc algorithm can be described as follows:
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Table 2 List of PCPSP instances from MineLib. ETInc parameters used in the experiments

PCPSP instance ETInc parameters

w w′ s

Newman 1 1 1.5

Zuck_small 6 1 0.5

KD 2 1 0.5

Zuck_medium 2 1 5.5

Marvin 5 1 0.5

W23 1 1 0.5

Zuck_large 4 1 0.5

SM2 1 1 0.5

McLaughlin_lim 2 1 0.5

McLaughlin 2 1 0.5

1. Select a new time window T̃ according to Sect. 3.1.
2. Select a subblock model B̃ according to Sect. 3.2.
3. Construct an auxiliary instance of OPBSP (or OPBSP sub-problem) by using B̃

and T̃ and solve it.
4. Select blocks for extraction.
5. If not finished, go to step 1.

4 Numerical Experiments

The datasets for all instances can be found at [2]. The list of 10 PCPSP instances on
which the algorithm was applied and the parameters used are presented in Table 2.
The computational resources consisted of a core i5-3570, 3.4 GHZ PC with 16 GB
of RAM, and GUROBI 6.5.2 was used as optimization software.

4.1 Results and Discussion

The results obtained from the numerical experiments and a comparison with the
corresponding best-known results for PCPSP instances from MineLib are presented
in this section.

Table 3 shows the value of the solutions for the linear relaxation obtained for
each instance of PCPSP, as reported in [2], and OPBSP, which were obtained by
implementing the Bienstock-Zuckerberg (BZ for short) algorithm. From the theo-
retical point of view, these values should be equal, however, there are very small
differences, being the largest relative difference for W23 smaller than 4×10−6. This
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Table 3 List of LP upper bounds obtained for PCPSP and OPBSP

PCPSP instance LP solution value

PCPSP OPBSP Abs. difference

Newman 24,486,549 24,486,549 0

Zuck_small 905,878,172 905,878,194 22

KD 410,891,003 410,891,003 0

Zuck_medium 750,519,109 750,519,188 79

Marvin 911,704,665 911,704,801 136

W23 387,693,394 387,691,933 1461

Zuck_large 57,938,790 57,938,804 14

SM2 1,652,394,327 1,652,394,357 30

McLaughlin_lim 1,324,829,727 1,324,829,835 108

McLaughlin 1,512,971,680 1,512,971,772 92

Table 4 Current best-known solution on 10 PCPSP instances available in MineLib library

Instance name Source Gap (%) Best-known
OPBSP objective

Gap (%)

Newman [13] 1.58 24,176,861 1.26

Zuck_small [13] 1.64 897,453,456 0.93

KD [2] 0.98 409,715,160 0.29

Zuck_medium [13] 3.00 701,157,160 6.58

Marvin [13] 1.61 905,829,721 0.64

W23 – 100.00 368,005,675 5.08

Zuck_large [2] 1.04 57,534,355 0.70

SM2 [2] 0.12 1,651,599,491 0.05

McLaughlin_lim [2] 0.24 1,322,283,576 0.19

McLaughlin [2] 0.19 1,510,373,891 0.17

is explained because different stopping criteria of the implementations of the BZ
algorithm were used. Therefore, the differences between LP upper bounds are small
enough not affect the optimality gap defined as

Gap � (LP upper bound − best-known solution objective)/LP upper bound (12)

Table 4 shows the current best-known feasible solutions for each instance as
reported in [2, 13] in terms of optimality gap, the objective values of the feasible
solutions obtained using ETInc and their respective optimality gaps. All feasible
solutions (except Zuck_medium instance) implemented to improve on the already
existing values and particularly that for the instanceW23, ETInc was able to produce
a solution with 5.1% optimality gap for OPBSP, therefore, improving on the current
trivial null solution.
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5 Conclusions

Anewfull-binary formulation for thePrecedenceConstrainedProductionScheduling
Problem (PCPSP) was presented. In this formulation (OPBSP), the blocks cannot
be partitioned, therefore, only one processing destination must be chosen for each
block.

An algorithm (ETInc) that aims to produce good feasible solutions for OPBSP,
and therefore for the PCPSP, was used. ETInc is similar to other algorithms proposed
in the literature as it uses the solution of the linear relaxation as a guide to generate
integer feasible solutions by constructing a ranking of blocks for extraction and
by resorting to solutions for auxiliary instances. ETInc was applied to a publicly
available library of instances included in MineLib, which consists of 10 different
cases of variable size, obtaining better results for the 9 out of 10 cases.

Further research is required for the library of problems. For example, even though
both formulations OPBSP and PCPSP accept lower bounds for capacity constraints,
the library does not have this type of constraint. In this sense, it is a challenge to
expand the number of case studies or instances available in MineLib to evaluate new
models and compare new algorithms.

Additional research areas should consider the inclusion of the uncertainty in mar-
ket and geology as well as the improvements in the computational time and memory
footprint.
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