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a b s t r a c t 

The design of pushbacks is essential to long-term open pit mine scheduling because it partitions the pit 

space into individual units, controlling ore and waste production. In this paper, a new model is proposed 

for the pushback selection procedure, which consists of characterizing the potential pushbacks based on 

the comprehensive family of nested pits and selecting those ones that meet a set of criteria, for instance, 

bounded ore and waste. An advantage of this method is the possibility to automate the pushback selec- 

tion methodology, applying well-defined criteria for the selection and reducing the time employed in the 

planning task. 
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. Introduction 

Long-term open pit mine production planning plays a key role

n assessment of mining projects. One of the main output is known

s production plan, which is about how and when the mining re-

erves will be extracted, generating a promise that commits the

ine production over time. Usually, due to the complexity of the

roblem, the planning process is divided into stages, generating

hree related problems that are sequentially solved in order to

btain a tentative production plan, that is: (i) determination of

he final pit, which consists of delimiting the subregion of the

ine where the extraction will be carried out; (ii) pushback selec-

ion, that corresponds to a partition of the final pit that allows to

uide the sequence of extraction and to control the design; and fi-

ally, (iii) temporary production scheduling, which defines in every

ushback when the different zones will be extracted and which of

hem will be processed. This paper is focused on the second stage,

bout pushback selection. 

The design of pushbacks is a key component for the long-term

pen pit mine scheduling process because it is critical for the final

esign of the mine and the profit obtained. The pushbacks are used

s a guide for the subsequent temporary production scheduling

tage, defining where the extraction process begins and where it

tops. In addition, pushbacks ensure safe pit walls, assist in meet-
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ng the ore production requirement and provide a minimum op-

rational width to accommodate mining equipment and different

ccess to the mine, among other activities. 

Traditionally, the pushback selection is often carried out man-

ally by expert mine planning engineers using a number of em-

irical rules on the nested pits obtained using the methodology

eveloped by Lerchs and Grossmann (1965) . From the total num-

er of generated nested pits, a selected group is used to define

ushbacks, based upon some criteria, for instance, minimum op-

rational width that must be maintained. However, this procedure

as important limitations: (i) it does not guarantee that the ore

nd waste tonnages are uniformly distributed between the push-

acks, which could affect the quality of the scheduling stage (also

nown as gap problem); (ii) the in-situ grade uncertainty is not

aken into account; and (iii) generally, the selection of pushbacks

s a subjective decision of a mine planning engineer, among others.

In this paper, a new model is proposed for the pushback se-

ection, which consists of characterizing the potential pushbacks

ased on the comprehensive family of nested pits and selecting

hose pushbacks that meet certain specified conditions, for in-

tance, bounded ore and waste, using mixed integer linear pro-

ramming. Details of the proposed model followed by the illustra-

ion of its performance using a number of deposits as case studies

re provided. 

The paper is organized as follows: in Section 2 it provides a

ummary of the most relevant (and best-known) approaches found

n the literature. Section 3 contains all the details concerning the

odeling, notation and problem statement. All the implementa-

ion details, and the numerical results obtained are given and
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commented on Section 4 . Finally, Section 5 contains some conclud-

ing remarks and perspectives. 

2. Related work 

The most common approach for producing pushbacks is the pit

limit parameterization, applied on an algorithm that produces an

ultimate pit limit. This is done by scaling the block economic value

when the algorithm is used to define the pit limit, partitioning the

ultimate final pit into a set of nested pits from which pushbacks

are manually selected. From a point of view, it is possible to clas-

sify the algorithms used to find pit limit as optimal or heuristics,

depending on whether optimality can be ensured. A complete ref-

erence for this topic can be found in Meagher et al. (2014a) , where

a review of methods are examined in order to produce pushback

designs, particularly, how they can tackle the gap problem. 

2.1. Parameterization and optimal approach 

Lerchs and Grossmann (1965) proposed the earliest algorithm

(LG) for the ultimate pit limit, which is formulated as maxi-

mal closure problem using graph theory, where nodes represent

blocks and arcs represent precedences between blocks. The authors

noted that it is possible to generate nested pits by repeatedly pa-

rameterizing the block revenues and applying the LG algorithm.

Vallet (1976) developed a variant of the LG algorithm that pro-

duces a series of nested pits by searching, at each stage, for the pit

with the highest revenue/volume ratio among all the feasible pits

in the graph. Another variant of this algorithm was developed by

Zhao and Kim (1992) , where the blocks are aggregated after it has

been noted that a block in a profitable group lies under a block in

an unprofitable group. Seymour (1995) modified the LG algorithm

to incorporate pit volume as a parameter, following the approach

of the LG method with the addition of the parametrized variables

and the added ability to notice when a subtree can be regarded

as a small pit, producing then a series of nested pits. Wang and

Sevim (1995) proposed a pushback design algorithm imposing an

upper bound on the size of the incremental pushbacks in order

to overcome the gap problem. Ramazan and Dagdelen (1998) de-

veloped the minimum stripping ratio pushback design algorithm,

where among all possible pushbacks with the same size, the algo-

rithm finds the one with minimum stripping ratio. 

Picard (1976) showed that the ultimate pit problem is equiv-

alent to the maximum closure problem , which in turn, can be

reduced to the min cut problem: given a directed graph G =
(V, A ) with weight function w defined over the nodes, one looks

for a subset of nodes U ⊂ V such that �u ∈ U w ( u ) is maximal

but u ∈ U , ( u, v ) ∈ A ⇒ v ∈ U . This allows one to use known effi-

cient algorithms for maximum flow to find the ultimate pit. Us-

ing this fact, Chandran and Hochbaum (2009) ; Hochbaum (2008) ;

Hochbaum and Chen (20 0 0) proposed to tackle the pit limit prob-

lem by means of existing efficient algorithms for the min cut prob-

lem, showing that the LG algorithm can be used as a network flow

algorithm , best known as pseudoflow algorithm as well. From the

series of normalized trees they showed how one could obtain an

optimal network flow. They also analyzed the runtime of the LG

algorithm and improved it by scaling techniques (different from

those used to generate pushback designs) to show that LG can be

implemented to run in O ( mn log n ) time, where m and n are the

number of arcs and nodes, respectively. 

2.2. Parameterization and heuristic approach 

A number of heuristic procedures have been developed to gen-

erate pits. Given a block b and a slope angle requirement, the set

of blocks that must be extracted before block b form a cone with b
t its base. Based on this, Floating Cone method was described by

ana (1965) and Carlson et al. (1966) . For each positive (ore) block,

his method involves constructing a cone with sides oriented par-

llel to the pit slope walls, and then determining the value of the

one by summing the values of blocks enclosed within it. If the

alue of the cone is positive, all blocks within the cone are in-

luded into the pit. This process starting from the top level and

oves downward searching for positive blocks. Searching process

ontinues until no positive cones can be found. The basic assump-

ion is that every cone in the optimal pit is profitable, whereas in

act an optimal pit may consist of a collection of cones none of

hich alone is of positive value, but together the cones share neg-

tive value blocks and have total weight which is positive. Mixing

his procedure with parameterization, either to finding the best pit

t different cutoff grades or changing the metal price, floating cone

ethod should be used in pushback design. There exist some vari-

tions of it, for example, Wright (1999) and Kakaie et al. (2012) . 

A different approach was proposed by Dagdelen and François-

ongarçon (1982) and Francois-Bongarcon and Guibal (1984) in re-

lacing the economic parameters (metal price, mining cost, cutoff

rades, etc) by ore content and recoverable metal quantity. They

resented an algorithm that generates a series of nested pits, but

arameterizing the total metal content and volume of incremental

it. A pit belongs to the parameterization if it contains the highest

uantity of recoverable metal. 

Dagdelen and Johnson (1986) used Lagrangian relaxation in the

ontext of linear programming (LP). This technique removes a trou-

lesome constraint from the LP and place it in the objective func-

ion, and can be applied to the problem of finding a pit of a

ounded tonnage. Modeling this problem as a LP with a capac-

ty constraint, it is straightforward to see that relaxing the com-

licated constraint, the problem being solved is the ultimate pit

imit problem, where the economic value of the orebody model is

caled down by a constant factor λ. Choosing λ to be zero this is

quivalent to finding the ultimate pit limit. As λ gets larger one

an expect to get smaller and smaller pits. One can therefore view

he procedure of finding nested pits by Dagdelen and Johnson’s

agrangian parametrization as an equivalent procedure to that of

caling the orebody model value and running the LG algorithm to

et a series of nested pits. It therefore suffers from the same gap

roblems as those discussed in the review of existing methods in

n earlier section. Choosing appropriate values of λ is not always

traight forward either, it may take quite a bit of time to try and

nd the value of λ to produce pits close to the desired tonnage,

nd it might not even be possible to produce a pit of the desired

ize with this technique. Somrit and Dagdelen (2013) presented a

ax flow-Lagrangian based phase design algorithm, including time

alue of money and blending requirements in its formulation. 

.3. Other approaches 

Some efforts to incorporate the mine production schedul-

ng decision into the pushback selection are: Elkington and

urham (2011) outline a method for simultaneously optimizing

ntermediate and ultimate pushback selection with the determi-

ation of production scheduling, cutoff grades and stockpiling to

aximize net present value. This work is done at bench-phase res-

lution (aggregation of blocks). Meagher et al. (2014b) presented

 method based on pipage rounding that generates near maxi-

al expected profit and dynamically defines the optimal cutoff

rade, and which aims to produce a set of pushbacks in a way

hat the total discounted profit to be generated through production

cheduling is maximized. These efforts are made so that pushback

efinition does not depend on the judgment of decision-maker.

abesh et al. (2014) developed a pushback design algorithm based

n mathematical programming and a two-step heuristic based on

https://doi.org/10.1016/j.cor.2018.04.015
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reedy and local search approaches, where the algorithm assigns

locks to pushbacks such that the ore and rock tonnages in each

ushback do not exceed maximum values. 

In the last years, the incorporation of several sources of uncer-

ainty in the planning process has attracted great interest of the

esearchers. For example, those that have included geological un-

ertainty: Gholamnejad and Osanloo (2007) , Consuegra and Dim-

trakopoulos (2010) , Goodfellow and Dimitrakopoulos (2013) ; and

arket uncertainty as well: Meagher et al. (2009) . 

. Modeling, notation and problem statement 

In this section the main notation and formulation for auto-

ated pushback selection will be presented. 

.1. Nested pit generation 

The methodology is based on the following assumptions in or-

er to obtain a series of nested pits. 

1. A set of blocks denoted as B. 

2. Set B represents the final pit of the deposit and the blocks are

denoted with letters b and b ′ . 
3. The generation of nested pits has a great impact on pushback

selection. They are generated using a metal price parameteriza-

tion and an economic block model. 

3.1. Parameterization : it corresponds to a sequence of N revenue

factors 0 < λ1 < λ2 < ��� < λN ≤ 1, which are used to scale the

metal price. Each revenue factor produces a pit. These pa-

rameters normally are obtained defining an initial, step and

final values, but this choice is dependent on the subjective

criteria from the mine planning evaluator. 

3.2. Economic block model : if for all i ∈ [1, N ], v i 
b 

represents the

value of block b when the metal price is scaled by the rev-

enue factor λi , then 

v i b = { 

[ ( P · λi − SC ) · R · y b − MC − PC ] · to n b if y b ≥
MC + PC 

( P · λi − SC ) · R 

−MC · to n b otherwise 

(1) 
where P is the metal price, SC is the selling cost, y b is the

ore grade of block b, R represents the metallurgical recovery,

PC and MC the processing and mining cost, respectively, and

ton b is the total tonnage of block b . All factors must be in

the correct units. 

4. It solves a series of final pit problems (UPIT) by considering

each economic block model according to (1) in order to obtain

a family of nested pits. 

(UPIT) max 
∑ 

b∈B 
v i b x b 

s . t . x b ≤ x b ′ ∀ b ∈ B, b ′ ∈ PREC (b) 

x b ∈ { 0 , 1 } ∀ b ∈ B 

In this model, for all i ∈ [1, N ], x b is a binary variable for inter-

mediate pit selection, where x b = 1 means that block b belongs

to pit i and x b = 0 otherwise. PREC (b) represents the subset of

blocks with a precedence arc from block b : this set is com-

pletely defined by indicating the slope angle and the number

of levels (benches) upper from block b . 

n the parameterization step, the best choice of revenue factors in

erms of controlled increments of tonnage between two successive

its is not guaranteed (gap problem). A simple form to potentially

efine these increments may be done by means of Procedure 1 . 

rocedure 1. Steps in order to refine pits in terms of volume and

onnage. 
1. Identify where it is possible to refine : suppose that two consecu-

tive revenue factors λk and λk +1 are identified, where the re-

spective pits present a huge difference in terms of tonnage.

The objective is to split, if possible, the intermediate pit into

M parts. 

2. Calculate new intermediate revenue factors : for this, the following

expression is used 

λ( j) = 

λk 

N 

+ j 
λk +1 − λk 

MN 

∀ j ∈ [1 , M − 1] 

where N is the number of revenue factors and M is the po-

tential number of parts resulting in the refinement. Although

there is no general rule for choosing M , a value of 10 is recom-

mended in order to balance the number of potential intermedi-

ate pits and computation time when solving the additional pit

problems. 

It is very important to highlight that this procedure does not

uarantee to reduce the gap between successive pits, because this

trongly depends on the distribution of ore in the deposit. For ex-

mple, in deposits with diseminate ore and huge tonnage of waste

aterial, it is not possible to ensure such refinement. 

.2. The model for automatic pushback selection 

Once the set of nested pits is defined, the next step is to use

hese pits in order to select pushbacks that help to control the

roduction planning. Under the traditional methodology, one of

he difficulties and limitations this task has is related to the non-

pplication of well-defined criteria to select pits that represent

ushbacks, and its success strongly depends on the expertise of

ine planner in order to control key indicators, such as gapping

roblem, stripping ratio between waste and ore, minimum oper-

tional spaces, among others. In this paper a new model is pro-

osed: characterizing the pushbacks from the set of nested pits,

he model allows to find the best combination of pushbacks by

atisfying a number of different criteria, which are related to the

ey indicators said before. 

Let N be the number of nested pits generated by metal price

arameterization and let P i be the i th nested pit, with i ∈ [1, N ]. De-

ne a dummy pit as one without blocks (empty set), denoted as

 o . The property of nested pits ( Lerchs and Grossmann, 1965 ) al-

ows to write 

 o ⊆ P 1 ⊆ . . . ⊆ P N 

ased on the above set of assumptions, a pushback F ij is defined

s the set of blocks within the difference between two pits, P i and

 j , that is 

 i j = P i \ P j ∀ i ∈ [1 , N] , j ∈ [0 , i − 1] . 

ome considerations: 

(i) The set of pushbacks will be denoted by F . 

(ii) Given N different nested pits, the total number of theoreti-

cally possible pushbacks is N (N +1) 
2 . 

(iii) Also, there exist 2 N−1 different ways to select a partition of

the final pit based on pushbacks. 

It is impossible to test all combinations (enumerative schema),

onsidering the exponential behavior of (iii). For example, if N = 30

he number of possible combinations is more than 500 millions. 

For each pushback, let rton i j be the total tonnage (rock ton-

age) of pushback F ij . Similarly, oton i j represents the ore tonnage

f pushback F ij . The desired rock and ore tonnages in each push-

ack are given by upper and lower limits and they are denoted

espectively by: (i) rock tonnage in pushback F ij , RT + 
i j 

and RT −
i j 

; and

y (ii) ore tonnage in pushback F ij , OT + 
i j 

and OT −
i j 

. 

https://doi.org/10.1016/j.cor.2018.04.015
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To automate the pushback selection, it is necessary to character-

ize the family of potential pushbacks. The set of predecessor push-

backs defined at a given one F ij is denoted by 

PREC i j = 

{
F i o j o ∈ F : i o = j, j o ∈ [0 , j − 1] 

}
∀ i ∈ [2 , N] , j ∈ [1 , i − 1] 

Similarly, the set of successor pushbacks at F ij is defined by 

SUC i j = 

{
F i o j o ∈ F : i o ∈ [ i + 1 , N] , j o = i, 

}
∀ i ∈ [1 , N − 1] , j ∈ [0 , i − 1] 

Now, the model for automated pushback selection is presented

from a general point of view, showing how to define variables, pos-

sible objectives to select from and what constraints must be satis-

fied. 

3.2.1. Variables 

The variables related to the decision of whether to select or not

a given pushback are 

x i j = 

{
1 if pushback F i j is selected, 
0 otherwise 

(2)

3.2.2. Objective function 

There exist a number of alternatives in order to define the ob-

jective function. The particular choice will depend on the mine

planner objectives and the particular case study. In general, the

recommendations in order to realize a good choice are to ensure

the extraction of mineral as soon as possible, which is related to

nested pits definition, based on parameterization over metal price,

but also to ensure equilibriums of waste and ore movements across

life of mine, postponing the waste extraction as much as possi-

ble, while at the same time, the design of pushbacks keeps min-

imum operational spaces. Some examples of objective functions

that should be chosen are: 

1. Minimization of the tonnage differences among selected push-

backs (gap problem). 

2. Minimization of the stripping ratio (waste/ore) into the first

pushbacks, delaying as much as possible the waste extraction. 

3. Maximization of the ore tonnage within each pushback. 

4. Optimization of the number of pushbacks, for instance, what

is the minimum number of pushbacks that satisfy the require-

ments given by the constraints. 

5. Definition of an operational design measure in order to maxi-

mize the pushback width along a preferred direction. 

3.2.3. Constraints 

The constraints are classified as structurals (a.1)–(a.3), because

they are always applied and keep the model well-defined; specials

(b.1) and (b.2), because they impose conditions on the pushbacks

and are applied only if these are not in conflict with the objective

function; and simplifiers (c.1) and (c.2), which want to set variables

and reduce the search space. 

(a) Structurals : pushback selection must be a partition of the fi-

nal pit. Therefore, it must be imposed by the following con-

straints: 

(a.1) Initial and final pushbacks : the pushback selection must

consider an initial pushback F i 0 and a final pushback F Nj into

the partition, then 

N ∑ 

i =1 

x i0 = 1 (3)
e  
N−1 ∑ 

j=0 

x Nj = 1 (4)

(a.2) Relationship with predecessor pushbacks : in order to se-

lect a pushback F ij , it must have selected one and only one

of their predecessor pushbacks F i o j o ∈ PREC i j as well 

x i j ≤
∑ 

F i o j o ∈ PREC i j 

x i o j o ≤ 1 ∀ i ∈ [2 , N] , j ∈ [1 , i − 1] (5)

(a.3) Relationship with successor pushbacks : in order to select

a pushback F ij , it must have selected one and only one of

their successor pushbacks F i o j o ∈ SUC i j as well 

x i j ≤
∑ 

F i o j o ∈ SUC i j 

x i o j o ≤ 1 ∀ i ∈ [1 , N − 1] , j ∈ [0 , i − 1] (6)

(b) Specials : they are optional constraints that affect some at-

tribute such as: 

(b.1) Predefined number of pushbacks : instead of optimiz-

ing the number of pushbacks, as given in point 4 of

Section 3.2.2 , this is a pre-set parameter in the model equal

to n o , where 1 ≤ n o ≤ N , then the respective constraint is 

N ∑ 

i =1 

i −1 ∑ 

j=0 

x i j = n o (7)

Of course, it is possible to be less strict with this condition,

imposing upper and/or lower bounds to the number of re-

quired pushbacks. 

(b.2) Pushback tonnages : the quantity of ore and rock ton-

nages should be bounded (gapping problem). For this, it

makes 

OT −
i j 

x i j ≤ oton i j x i j ≤ OT + 
i j 

∀ i ∈ [1 , N] , j ∈ [0 , i − 1] (8)

RT −
i j 

x i j ≤ rton i j x i j ≤ RT + 
i j 

∀ i ∈ [1 , N] , j ∈ [0 , i − 1] (9)

(c) Simplifiers : these constraints aim to set variables in order

to reduce the search space of feasible solutions. Basically,

they take advantage that it is not possible to ensure that all

nested pits are different, that is, P o �P 1 �����P N when con-

sidering revenue factors 0 < λ1 < ��� < λN . 

(c.1) Setting variables I : if K < N first revenue factors give

empty pits P 1 = · · · = P K = P o , then it is possible to set the

pushbacks associated with these pits, that is 

x i j = 0 ∀ i ∈ [1 , K] , j ∈ [0 , i − 1] (10)

(c.2) Setting variables II : if K first pits are empty, the push-

backs F ij associated with i = K + 1 , . . . , N will be equal, with

j = 0 , therefore, it is possible to set the remain variables 

x i j = 0 ∀ i ∈ [ K + 1 , N] , j ∈ [1 , K] (11)

Fig. 1 shows a simplified procedure: a set of nested pit is calcu-

ated and, based on specific criteria, for instance, bounded ore and

ock tonnages, the best combination of pushbacks is selected using

he proposed model. 

.3. An example of automated pushback selection model 

A very interesting particular case is about controlling the dif-

erences among pushback tonnages. If the growth rate of tonnages

or the nested pits is relatively low and constant, the gap problem

n the pushback selection should be avoided. In this case, in order

o represent the desired objective function, a minimization of total

eviations regarding to a reference value shall be used. The ref-

rence value corresponds to the tonnage of each pushback when

https://doi.org/10.1016/j.cor.2018.04.015


Fig. 1. Nested pits generated by a parameterization of the metal price (left). Some of these pits are selected as pushbacks (right), using the model to automate the selection. 
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Table 1 

Parameters to generate nested pits from MCL and BMT . 

Technical and economic parameters Symbol Value ( MCL ) Value ( BMT ) 

Slope angle ; # levels PREC (b) 45 ° ; 5 45 ° ; 5 

Metallurgical recovery R 0.76 0.90 

# revenue factors N 100 90 

Metal price P 1100 ($/ozt) 2.5 ($/lb) 

Selling cost SC 100 ($/ozt) 0.4 ($/lb) 

Mining cost MC 1.5 ($/ton) 3.2 ($/ton) 

Processing cost PC 8.2 ($/ton) 9.0 ($/ton) 
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t has a equipartition of the ultimate final pit into n o pushbacks,

nd this value is given by 
rton N0 

n o 
. An alternative is by means of

uadratic functions such as variance, but another one is the mean

bsolute deviation (MAD), which in this case measures the mean

f the deviations of all values (tonnages) from the reference value,

isregarding their sign. More precisely 

AD = 

1 

n o 

N ∑ 

i =1 

i −1 ∑ 

j=0 

∣∣∣rton i j −
rton N0 

n o 

∣∣∣x i j (12) 

hen, the mean absolute deviation works as variability measure

hat would be minimized to select a set of pushbacks from nested

its. Then, the problem to automate the pushback selection task

PS) consists of solving: 

(P S) min 

1 

n o 

N ∑ 

i =1 

i −1 ∑ 

j=0 

∣∣∣rton i j −
rton N0 

n o 

∣∣∣x i j (13) 

.t. 

N ∑ 

i =1 

x i0 = 1 (14) 

N−1 ∑ 

j=0 

x Nj = 1 (15) 

 i j ≤
∑ 

F i o j o ∈ PREC i j 

x i o j o ≤ 1 ∀ i ∈ [2 , N] , j ∈ [1 , i − 1] (16)

 i j ≤
∑ 

F i o j o ∈ SUC i j 

x i o j o ≤ 1 ∀ i ∈ [1 , N − 1] , j ∈ [0 , i − 1] (17)

N ∑ 

i =1 

i −1 ∑ 

j=0 

x i j = n o (18) 

 i j = 0 ∀ i ∈ [1 , K] , j ∈ [0 , i − 1] (19) 

 i j = 0 ∀ i ∈ [ K + 1 , N] , j ∈ [1 , K] (20) 

 i j ∈ { 0 , 1 } ∀ i ∈ [1 , N] , j ∈ [0 , i − 1] (21) 

xpression (13) represents the objective function, where the

ifferences among pushback tonnages is minimized; con-

traints (14) to (17) guarantee the pushback selection is a

artition of the final pit; (18) ensures a selection of n o push-

acks; (19) and (20) reduce the number of variables, setting their

alues to zero; and finally (21) denotes the nature of variables. 

. Implementation and results 

In this section the methodology above presented was applied

n two case studies: one from a gold deposit and the other from

 copper deposit. The aim of these experiments is essentially to

valuate the performance of the proposed model on two different
ind of orebodies. In both instances the model implemented was

PS), that is, throughout Eqs. (14) . The experiments consist of two

tages: (i) a number of nested pits are generated by scaling the

etal price following the steps of Section 3.1 , and (ii) the proposed

odel for automatic pushback generation is applied. 

In order to implement the model (PS), the Minelink library

eveloped at Delphos Mine Planning Laboratory at Universidad de

hile ( Delphos, 2015 ) is used, which implements data structures to

tore the block model, precedence arcs and then to generate nested

its. The library is written in C++, but there also exists a wrapper

o use it from Python , a general-purpose free available scripting

anguage, version 2.7 ( Python, 2015 ). (PS) is implemented inside

uLP library ( Mitchell et al., 2011 ). GUROBI is used as solver, ver-

ion 5.6.3 for mixed integer linear optimization ( Gurobi Optimiza-

ion, 2015 ). Execution of the code was done on an Intel Core i7-

510U machine with 8 Gb ram, running Windows version 8.1. This

achine has 4 processors that run at 3.10 GHz. Before reporting the

ain results, the instances and the parameters used in the experi-

ents will be introduced. 

.1. Instances 

The first case study is known as McLaughlin gold deposit, which

as located in the northern Coast Ranges of California. This deposit

as mined from 1985 until 1996, but gold processing continued

hrough 2002. It was a world-class gold orebody and one of the

orld’s finest examples of a hot spring-type epithermal precious

etals system. The dataset (blocks coordinates, tonnage and ore

rade) is obtained from the Minelib library ( Espinoza et al., 2013 )

nd this case will be called MCL , for short. 

The second case study corresponds to a part of a porphyry cop-

er deposit, but due to confidentiality considerations no more de-

ails can be given. This deposit will be called BMT . 
The parameters used for the generation of nested pits for both

ases are shown in Table 1 , where slope precedence relationships

re given by technical parameters (slope angle and number of lev-

ls) and an economic block model is defined from Eq. (1) by us-

ng values of metal price, recovery, mining, processing and selling

osts. Remember that ore grades and tonnages from each block are

iven as attributes in the block model. 

The MCL block model contains more than 2 millions blocks but

47,793 blocks are in the ultimate final pit, which has 250.8 (Mton)

f rock and 194.1 (Mton) of mineralized material. On the other

and, the BMT block model has near to 40 0,0 0 0 blocks, but inside

he final pit there are 106,781 blocks, having 250.6 (Mton) of total

https://doi.org/10.1016/j.cor.2018.04.015


Fig. 2. (a) Pit by pit graph, and (b) E1750 long section view showing nested pits from MCL model. 

Fig. 3. (a) Pit by pit graph, and (b) N4900 long section view showing nested pits from BMT model. 

Table 2 

Parameters to generate an automated pushback selection from MCL 
and BMT with MAD objective function. 

PS model parameters Symbol Value ( MCL ) Value ( BMT ) 

# pits N 100 90 

Total tonnage (Mton) rton N0 250.8 250.6 

# empty pits K 12 20 

# pushbacks n o 3, 4, 5, 6 3, 4, 5, 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Main numerical results. For each case and respective instance are shown: average 

tonnage, MAD and ratio as deviation measures, and required time to compute the 

solution. 

Instance MCL BMT 

ATT MAD Ratio Time ATT MAD Ratio Time 

(Mton) (Mton) (%) (s) (Mton) (Mton) (%) (s) 

Push-3 83.6 6.1 7.3 2.8 83.5 2.8 3.3 1.3 

Push-4 82.7 0.6 0.7 3.6 62.7 1.5 2.4 0.9 

Push-5 50.2 1.1 2.2 3.5 50.1 1.7 3.4 1.4 

Push-6 41.8 4.1 9.8 5.1 41.8 1.4 3.5 1.4 
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tonnage and 172.1 (Mton) of mineral. In both cases, all blocks not

included in the ultimate final pit are removed from the set and not

considered in the subsequent steps of the procedure. 

Now, considering a family of N revenue factors as λi = i/N, for

i ∈ [1, N ], and solving repeatedly ( P λi 
), a set of N potential pits

would be generated. 

4.2. Results 

In MCL case, time employed to compute the family of nested

pits was 50 s. The first non-empty pit was found using a revenue

factor λ = 0 . 13 , therefore K = 12 . From BMT block model, the set

of nested pits was found in 42 seconds and the first non-empty pit

corresponds to a revenue factor 0 . 2 3 , so that in this case K = 20 .

In Figs. 2 and 3 , the pit by pit graphs show ore and waste ton-

nages for each pit and cumulative undiscounted value, besides long

section views from obtaining nested pits: it is worth highlighting

that, traditionally, these aspects are used to identify candidates for

pushbacks. Since the tonnage increments between successive pits

do not present significant volume increases, it is not necessary in

both cases to apply the Procedure 1 in order to generate interme-

diate pits. 

Now, different instances for automatic pushback generation are

set: for these, the number of required pushbacks are imposed from

3 to 6, resulting in four instances for each case. Table 2 shows a

summary of the parameters. Table 3 shows for each case study and

for each instance: average total tonnage ( ATT ) and objective value,
hat is, minimization of the mean absolute deviation ( MAD ) among

ushbacks, presenting when it is possible a solution for the gap

roblem in the pushback selection in a minimum required time,

hich is shown as well in column Time . Additionally, column Ra-

io shows the ratio between mean absolute deviation and average

otal tonnage, expressed as percentage. For each case, four differ-

nt results were obtained, one per required number of pushbacks,

eing denoted as Push- n o . Default optimality gap of the solver was

et to 1%, but all obtained results were optimal (0% gap). 

An important aspect of this methodology is the time required

or arriving at the final solution: the nested pit generation was

omputed in both cases for all instances in less than 60 s, while

he automated pushback selection was computed in 5 s in the

ost time-consuming instance. This indicates one of the main ad-

antages of this model, which is so fast to compute a pushback

election applying well-defined criteria. 

The results for each instance and each case are shown in

igs. 4 and 5 , presenting ore and waste tonnages, average grade

nd long section views from each pushback selection. All instances

how decreasing both ore tonnage and average grade. 

An important aspect in pushback design is their role in the

roduction scheduling. Pushbacks strongly influence access to the

re and waste blocks in all periods in order to maximize the net

resent value (NPV). It is clear that NPV will be higher if ore blocks

https://doi.org/10.1016/j.cor.2018.04.015


Fig. 4. For each instance, both ore-waste tonnages and average grade graph is shown (left side), along with corresponding long section view (right side) for MCL case. 

Table 4 

Stripping ratio for each pushback and instance from the selection 

in MCL case. 

MCL instance Pushback number 

1 2 3 4 5 6 

Push-3 0.05 0.29 0.77 – – –

Push-4 0.05 0.11 0.43 0.82 – –

Push-5 0.05 0.08 0.22 0.58 0.87 –

Push-6 0.04 0.06 0.19 0.39 0.66 0.89 

c  

a  

B  

t  

Table 5 

Stripping ratio for each pushback and instance from the selection 

in BMT case. 

BMT instance Pushback number 

1 2 3 4 5 6 

Push-3 0.28 0.49 0.62 – – –

Push-4 0.25 0.49 0.49 0.64 – –

Push-5 0.24 0.52 0.43 0.52 0.66 –

Push-6 0.21 0.37 0.57 0.43 0.58 0.67 

b  

t  

i  

p  
an be mined during early periods. By construction of nested pits

pproach as revenue factor increases, so does the amount of waste.

ased on these facts, if the gap problem is controlled, an addi-

ional result is the desired behavior of stripping ratio: the push-
ack selection moves from low stripping ratio sectors of the mine

owards high stripping ratio sectors, helping to obtain a high NPV

n scheduling stage. Tables 4 and 5 show the stripping ratio for the

ushback selection obtained from MCL and BMT cases, respectively.

https://doi.org/10.1016/j.cor.2018.04.015


Fig. 5. For each instance, both ore-waste tonnages and average grade graph is shown (left side), along with corresponding long section view (right side) for BMT case. 
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In general, for both cases and most of the instances, the stripping

ratio is increasing, from first to last pushback, which indicates the

delayed extraction of waste material. 

5. Conclusions and future work 

In this paper, a new model for automatic selection of pushbacks

from a set of nested pits as support and applying a set of well-

defined criteria is presented, in the context of long-term open pit

mine planning. This model works on a mixed integer programming

setting, characterizing properly the family of pushbacks from pits

that can be obtained using, but not limited to, standard methods

such as parameterization of metal price or similar. 

Some important considerations about the nested pits support:

for one side, the generation of nested pits has a key impact into

automated pushback selection, therefore it is important to be care-
ul in the selection of the revenue factors that define the set of pits.

or the other side, since the model works on pit support instead

f block support, the size of deposit is not a limitation to gener-

te pits and then pushbacks to select from, because the associated

rogramming model has at most N (N +1) 
2 variables, where N is the

umber of pits. Note that, when it is possible, the simplifiers con-

traints allow to reduce the amount of variables. 

The proposed approach was applied on two different case stud-

es, showing that it was able to produce quickly alternative sets

f pushbacks that minimize the total tonnage differences among

hem, helping to avoid the so called gap problem in pushback de-

ign. The main advantages of this new approach are: (i) it gives

everal and well-defined criteria to select pushbacks from nested

its; therefore, it allows the mine planner to automate this task.

ii) It is very fast and low computational resource consuming to

ompute an optimal solution, having the choice to assess other in-

https://doi.org/10.1016/j.cor.2018.04.015
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eresting criteria defined by the mine planner. (iii) Easy implemen-

ation, in the sense that it can be integrated to existing software

ased on parametrization approaches. 

As future work, the characterization of the set of pushbacks

rom nested pits support should be used as the basis in order to

evelop a family of models that enable to move forward in new

lgorithms for pushback generation in a more efficient way. Ad-

itionally, to research about alternative supports to nested pits to

uarantee good feasible solutions. Another research line should be

o incorporate time dimension into pushback selection to ensure

 design that reach high NPV in production scheduling, similar to

lkington and Durham (2011) or Jelvez and Morales (2017) . Finally,

n order to model operational constraints such as minimum pit

ottom width, the ideas from Saavedra-Rosas et al. (2016) can be

ncorporated into nested pit generation. 
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