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expense of the efficiency of the non-main route fleet. When the safe distance is too long, the improvement of the 
main route fleet performance is compromised by the reduction of the non-main route fleet performance. 
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Open pit ramp design is a complex stage of mine planning that is often time consuming and highly 
dependent on the planner expertise. To help the mine planner to optimize this strategic step, we 
propose an integer linear programming model that starts from a given pushback at the block level, 
with ramp parameters and geotechnical constraints, and produces a new pushback that facilitates the 
ramp design. The aim of the optimization is to minimize the impact of the ramp design on the 
economic value, shape and tonnage of the original pushback. 

 
 
Introduction 
The problem of strategic open pit planning optimization is divided into several stages. In the first stage, the production 
plan optimization takes place, during which the mine planner determines the volumes, or pushbacks, to be scheduled 
for mining over time based on a valuated block model with the pushbacks defined at the block level. The second stage 
consists of the design of the pit phases, where the pushbacks are used as guides to plan the phases, including the ramps 
and operational spaces required for the material extraction. Finally, in the last stage, a mine plan is constructed by 
scheduling the benches of the designed phases. 
 
The first and third steps are often supported by computational tools and optimization models. For example, the 
optimization of the production plan can be addressed using the final pit problem approach in which a set of blocks 
with maximum value is computed such that the requirement for safe slope angles are met. This problem does not take 
into account extraction capacities or blending constraints and, therefore, does not consider time of the operation. 
However, this approach is widely used and has proven to be very useful as shown by Lerchs and Grossman [16], who 
proposed an algorithm to solve the final pit problem and showed that the final pit can be parameterized to generate 
several nested pits or pushbacks. Indeed, this approach is commonly used in commercial software [7]. 
 
An alternative to the nested pits approach is the direct block scheduling, which was proposed by Johnson [11]. In this 
approach, blocks are scheduled in discretized time periods and the extraction capacities and blending constraints can 
be expressed for each time period. The objective of this approach is to maximize the time dependent discounted value 
of extracted blocks. Bienstock and Zuckerberg [1] proposed an algorithm based on the relaxation of capacity and 
blending constraints that significantly improves the time to obtain the continuous solution. Lambert et al. [12] 
presented a tutorial that explains various formulations for the constrained pit problem with extraction capacities 
constraints and fixed block destination. Literature is also abundant with respect to the direct block scheduling used in 
open pit scheduling heuristics [14], [15], [18]; Jelvez et al. [10] proposed a spatial aggregation heuristic to improve 
most of MineLib [9] solutions to the constrained pit problem.  
 
On the other hand, for the second stage related to phase design, the automated or optimization tools available for the 
user are very few or non-existent. The ramp design is iterative, graphically done, time consuming and highly dependent 
on the planner´s expertise. To authors´ knowledge, there is no known publication that describes the whole open pit 
ramp design problem mathematically; there are publications that present the ramp design or part of the problem but 
without a mathematical model [17].  
Sussman [19] developed a solution to the minimal path problem in a three dimensional space but without gradient 
constraint. Lee and Klette [13] proposed an algorithm that works in a three dimensional grid space of cube blocks. 
This algorithm solves some Euclidian Shortest Path (ESP) problems, for example, the shortest path inside polygons 
but also without gradient constraints.   
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Brazil et al. [2] aimed to solve the design of underground ramps by applying a theorem presented in Dubbins [6] in 
the three dimensional space with a fixed gradient. This theorem defines the shape of the admissible path of minimal 
length between two oriented points in the plane. An extended path method is used to optimize the underground ramps 
that can be lines or curves. The characteristics of this design are: the underground ramp curvature is fixed, both 
extremities of ramps and gradient are fixed, ramps must not go into specified zones and part of ramp can be above 
other part. 
However, open pit ramp design is very different from underground design. For example, no part of ramp can be above 
other part, it is not necessarily known in advance where the ramps will end, the starting point of the ramp may be also 
part of optimization and the ramp curve may not need to be the same overall, among other constraints.   
Therefore, an optimization model that aims to assist the planner in the design of the ramps for an open pit operation 
has been developed with an objective to maximise the economic value of the pushback that includes ramps and thus 
producing a new pushback, which is as close as possible to the original pushback. 
 
Due to security reasons, there are generally more than one ramp in open pit mines. However, in this study, only one 
ramp was constructed to simplify the modelling. The more general problem of more than one ramp will be addressed 
in the forthcoming research. 
The model works at the block model level and does not aim to produce a fully designed pushback, but rather to provide 
a guide to help the planner to better understand the issues related to the ramp design: such as, what are the best starting 
points for the ramps, what would be the impact if the design parameters (such as  maximum ramp gradient, minimum 
ramp width, inter-ramp slope angle, overall slope angle) change or when the transportation costs change (for example, 
for different potential locations of waste dumps or stocks), all of that without needing to do the actual design of the 
mine. 
 
Brief description of the proposed problem  
Given a valuated block model and a pushback computed within this block model, a pit boundary of blocks around the 
limits of this pushback is considered.  A new pushback (call designed pushback) is computed with its limits within 
the block boundary such that it contains enough space for the design of a ramp that goes from the top of the original 
pushback to the bottom of the designed pushback. Having this pit boundary guarantees that the resulting pushback is 
similar to the original one. The value of the designed pushback is computed by adding the values of its individual 
blocks that are extracted due to the ramp design and those that were inside the original pit (the reduced pushback is 
the part of the original pushback that exclude all the possible ramp blocks considering the given pit boundary).  
 
In order to compute the designed pushback, at each bench a block that belongs to the ramp being designed is selected 
(we assume that it is the wall side of the ramp that corresponds to blocks in black in Figure 1a). This selection has to 
comply with several constraints. At a minimum, there are the ramp slope constraints, which define which blocks can 
be reached from a particular bench to the bench below. This is modelled using graph theory; it is assumed that there 
is an arc from Block 𝑏𝑏 to Block 𝑏𝑏𝑏 if it is possible to draw a ramp from 𝑏𝑏 to 𝑏𝑏𝑏. The set of blocks in between these two 
is an elementary path that complies with the following definition. 
(𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑚𝑚)  is a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘𝑙𝑙𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑝𝑝𝑘𝑘𝑘𝑘ℎ  if it is a directed path with no repeated blocks, and  
                                                        ∀ 𝑗𝑗 𝑗 {1,2, … , 𝑘𝑘 𝑚 2}, blocks 𝑏𝑏𝑗𝑗, 𝑏𝑏𝑗𝑗𝑗1 share exactly one face, and 

                                                        blocks 𝑏𝑏𝑚𝑚𝑚1, 𝑏𝑏𝑚𝑚 share exactly one edge, and 
                                                        blocks 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑚𝑚𝑚1 belong to bench 𝑘𝑘, and  
                                                        block 𝑏𝑏𝑚𝑚 belongs to bench 𝑘𝑘 𝑚 1, and 

     gradient of (𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑚𝑚) is inferior or equal to the maximum ramp gradient. 
 
Figure 1 illustrates these concepts. In Figure 1a (top), an original pushback and a possible pit boundary are shown. In 
Figure 1a (bottom), an example of designed pushback with ramps for the original pushback is shown. In this example, 
the ramps on wall side are in black and the minimal ramp width has the length of two blocks. The obscure grey blocks 
have been added to complete the ramp width. In Figure 1b, two blocks are selected and the blocks to be removed in 
order to give space for the ramp are shown. The level k elementary path is then computed as a shortest path between 
its two extremes on same level using the Dijkstra algorithm [3]. For this example, the minimal ramp width has the 
length of one block. Lineal optimization will choose which precomputed 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘𝑙𝑙𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑝𝑝𝑘𝑘𝑘𝑘ℎ to combine to 
generate the wall side part of the ramps. 

 

 

 

(a) Top: Section view of a pit boundary in obscure grey 
comprised of two layers outside and zero layer inside an 
original pushback (in light grey).  
     Bottom: Section view of a designed pushback (in light 
grey) that includes ramps (in black and obscure grey).  

 (b) Isometric view of a level k elementary path 
with extremities b and b’ (in black) and 
intermediate blocks (in light grey). Blocks in 
obscure grey have to be extracted to respect slope 
precedences.  

Figure 1: Examples of pit boundary, designed pushback and level k elementary path 
 
The model is completed by adding constraints that ensure the connectivity of the successive level paths and ramp 
width as well as constraints that prevent blocks to be extracted immediately below ramps, among others. 
It can be seen in Figure 1b that the arcs from a block at bench 𝑘𝑘 to the blocks reachable by a ramp at bench 𝑘𝑘 𝑘 𝑘 are 
crucial to the modelling of the problem as it is implicitly used to model not only the ramp gradient but also the 
possibility of using switchbacks, avoiding known obstacles, considering different gradients in different regions, among 
other options.  
 
Optimization model 
The nomenclature for the proposed mathematical modelling is as follows: 
 

B the block model 
K the maximum level at which the ramps can commence 
𝐵𝐵𝑘𝑘  the set of blocks of level 𝑘𝑘, 𝑘𝑘 ∈ {0,𝑘, … , 𝐾𝐾}, level 0 is lower level, K is ramp top level 
𝑅𝑅 the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑟𝑟𝑝𝑝ℎ𝑏𝑏𝑏𝑏𝑟𝑟𝑘𝑘 
𝑅𝑅𝑘𝑘 𝑅𝑅 ∩ 𝐵𝐵𝑘𝑘  
𝑝𝑝𝑏𝑏  the profit of block 𝑏𝑏 
𝑝𝑝𝑅𝑅𝑘𝑘  the sum of the profit of all blocks in the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝 of level 𝑘𝑘 
𝐼𝐼𝑘𝑘  the set of index 𝑝𝑝 of all 𝑘𝑘 level elementary paths 
𝑝𝑝𝑘𝑘

𝑖𝑖  the 𝑝𝑝th 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙 𝑘𝑘 𝑟𝑟𝑙𝑙𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑝𝑝𝑏𝑏𝑟𝑟𝑒𝑒 𝑝𝑝𝑏𝑏𝑝𝑝ℎ  
𝑜𝑜𝑘𝑘

𝑖𝑖  the first block of 𝑝𝑝𝑘𝑘
𝑖𝑖  

𝑓𝑓𝑘𝑘
𝑖𝑖  the last block of  𝑝𝑝𝑘𝑘 

𝑖𝑖  
𝑂𝑂𝑏𝑏  the set of slope predecesors of block 𝑏𝑏; 𝑂𝑂𝑅𝑅𝑘𝑘 the set of predecesors of 𝑅𝑅𝑘𝑘 

𝐻𝐻𝑘𝑘
𝑖𝑖  the set of blocks of level k between 𝑝𝑝𝑘𝑘

𝑖𝑖  and 𝑅𝑅𝑘𝑘 needed to be extracted to complete the ramp width 
𝐿𝐿𝑘𝑘

𝑖𝑖  the set of blocks of level k between 𝐻𝐻𝑘𝑘
𝑖𝑖  and 𝑅𝑅𝑘𝑘 needed to be extracted to prevent a railing between 

ramps and pit  
𝐷𝐷𝑘𝑘

𝑖𝑖  the set of blocks of level 𝑘𝑘 𝑘 𝑘 immediately below the ramp blocks  𝑝𝑝𝑘𝑘
𝑖𝑖  ∪ 𝐻𝐻𝑘𝑘

𝑖𝑖  
𝑍𝑍𝑘𝑘

𝑖𝑖  the set of blocks of level k outside 𝑝𝑝𝑘𝑘
𝑖𝑖  (in the oposite direction of 𝑅𝑅𝑘𝑘) to avoid designing a pit between 
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Brazil et al. [2] aimed to solve the design of underground ramps by applying a theorem presented in Dubbins [6] in 
the three dimensional space with a fixed gradient. This theorem defines the shape of the admissible path of minimal 
length between two oriented points in the plane. An extended path method is used to optimize the underground ramps 
that can be lines or curves. The characteristics of this design are: the underground ramp curvature is fixed, both 
extremities of ramps and gradient are fixed, ramps must not go into specified zones and part of ramp can be above 
other part. 
However, open pit ramp design is very different from underground design. For example, no part of ramp can be above 
other part, it is not necessarily known in advance where the ramps will end, the starting point of the ramp may be also 
part of optimization and the ramp curve may not need to be the same overall, among other constraints.   
Therefore, an optimization model that aims to assist the planner in the design of the ramps for an open pit operation 
has been developed with an objective to maximise the economic value of the pushback that includes ramps and thus 
producing a new pushback, which is as close as possible to the original pushback. 
 
Due to security reasons, there are generally more than one ramp in open pit mines. However, in this study, only one 
ramp was constructed to simplify the modelling. The more general problem of more than one ramp will be addressed 
in the forthcoming research. 
The model works at the block model level and does not aim to produce a fully designed pushback, but rather to provide 
a guide to help the planner to better understand the issues related to the ramp design: such as, what are the best starting 
points for the ramps, what would be the impact if the design parameters (such as  maximum ramp gradient, minimum 
ramp width, inter-ramp slope angle, overall slope angle) change or when the transportation costs change (for example, 
for different potential locations of waste dumps or stocks), all of that without needing to do the actual design of the 
mine. 
 
Brief description of the proposed problem  
Given a valuated block model and a pushback computed within this block model, a pit boundary of blocks around the 
limits of this pushback is considered.  A new pushback (call designed pushback) is computed with its limits within 
the block boundary such that it contains enough space for the design of a ramp that goes from the top of the original 
pushback to the bottom of the designed pushback. Having this pit boundary guarantees that the resulting pushback is 
similar to the original one. The value of the designed pushback is computed by adding the values of its individual 
blocks that are extracted due to the ramp design and those that were inside the original pit (the reduced pushback is 
the part of the original pushback that exclude all the possible ramp blocks considering the given pit boundary).  
 
In order to compute the designed pushback, at each bench a block that belongs to the ramp being designed is selected 
(we assume that it is the wall side of the ramp that corresponds to blocks in black in Figure 1a). This selection has to 
comply with several constraints. At a minimum, there are the ramp slope constraints, which define which blocks can 
be reached from a particular bench to the bench below. This is modelled using graph theory; it is assumed that there 
is an arc from Block 𝑏𝑏 to Block 𝑏𝑏𝑏 if it is possible to draw a ramp from 𝑏𝑏 to 𝑏𝑏𝑏. The set of blocks in between these two 
is an elementary path that complies with the following definition. 
(𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑚𝑚)  is a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘𝑙𝑙𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑝𝑝𝑘𝑘𝑘𝑘ℎ  if it is a directed path with no repeated blocks, and  
                                                        ∀ 𝑗𝑗 𝑗 {1,2, … , 𝑘𝑘 𝑚 2}, blocks 𝑏𝑏𝑗𝑗, 𝑏𝑏𝑗𝑗𝑗1 share exactly one face, and 

                                                        blocks 𝑏𝑏𝑚𝑚𝑚1, 𝑏𝑏𝑚𝑚 share exactly one edge, and 
                                                        blocks 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑚𝑚𝑚1 belong to bench 𝑘𝑘, and  
                                                        block 𝑏𝑏𝑚𝑚 belongs to bench 𝑘𝑘 𝑚 1, and 

     gradient of (𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑚𝑚) is inferior or equal to the maximum ramp gradient. 
 
Figure 1 illustrates these concepts. In Figure 1a (top), an original pushback and a possible pit boundary are shown. In 
Figure 1a (bottom), an example of designed pushback with ramps for the original pushback is shown. In this example, 
the ramps on wall side are in black and the minimal ramp width has the length of two blocks. The obscure grey blocks 
have been added to complete the ramp width. In Figure 1b, two blocks are selected and the blocks to be removed in 
order to give space for the ramp are shown. The level k elementary path is then computed as a shortest path between 
its two extremes on same level using the Dijkstra algorithm [3]. For this example, the minimal ramp width has the 
length of one block. Lineal optimization will choose which precomputed 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘𝑙𝑙𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑝𝑝𝑘𝑘𝑘𝑘ℎ to combine to 
generate the wall side part of the ramps. 

 

 

 

(a) Top: Section view of a pit boundary in obscure grey 
comprised of two layers outside and zero layer inside an 
original pushback (in light grey).  
     Bottom: Section view of a designed pushback (in light 
grey) that includes ramps (in black and obscure grey).  

 (b) Isometric view of a level k elementary path 
with extremities b and b’ (in black) and 
intermediate blocks (in light grey). Blocks in 
obscure grey have to be extracted to respect slope 
precedences.  

Figure 1: Examples of pit boundary, designed pushback and level k elementary path 
 
The model is completed by adding constraints that ensure the connectivity of the successive level paths and ramp 
width as well as constraints that prevent blocks to be extracted immediately below ramps, among others. 
It can be seen in Figure 1b that the arcs from a block at bench 𝑘𝑘 to the blocks reachable by a ramp at bench 𝑘𝑘 𝑘 𝑘 are 
crucial to the modelling of the problem as it is implicitly used to model not only the ramp gradient but also the 
possibility of using switchbacks, avoiding known obstacles, considering different gradients in different regions, among 
other options.  
 
Optimization model 
The nomenclature for the proposed mathematical modelling is as follows: 
 

B the block model 
K the maximum level at which the ramps can commence 
𝐵𝐵𝑘𝑘  the set of blocks of level 𝑘𝑘, 𝑘𝑘 ∈ {0,𝑘, … , 𝐾𝐾}, level 0 is lower level, K is ramp top level 
𝑅𝑅 the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑟𝑟𝑝𝑝ℎ𝑏𝑏𝑏𝑏𝑟𝑟𝑘𝑘 
𝑅𝑅𝑘𝑘 𝑅𝑅 ∩ 𝐵𝐵𝑘𝑘  
𝑝𝑝𝑏𝑏  the profit of block 𝑏𝑏 
𝑝𝑝𝑅𝑅𝑘𝑘  the sum of the profit of all blocks in the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝 of level 𝑘𝑘 
𝐼𝐼𝑘𝑘  the set of index 𝑝𝑝 of all 𝑘𝑘 level elementary paths 
𝑝𝑝𝑘𝑘

𝑖𝑖  the 𝑝𝑝th 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙 𝑘𝑘 𝑟𝑟𝑙𝑙𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑝𝑝𝑏𝑏𝑟𝑟𝑒𝑒 𝑝𝑝𝑏𝑏𝑝𝑝ℎ  
𝑜𝑜𝑘𝑘

𝑖𝑖  the first block of 𝑝𝑝𝑘𝑘
𝑖𝑖  

𝑓𝑓𝑘𝑘
𝑖𝑖  the last block of  𝑝𝑝𝑘𝑘 

𝑖𝑖  
𝑂𝑂𝑏𝑏  the set of slope predecesors of block 𝑏𝑏; 𝑂𝑂𝑅𝑅𝑘𝑘 the set of predecesors of 𝑅𝑅𝑘𝑘 

𝐻𝐻𝑘𝑘
𝑖𝑖  the set of blocks of level k between 𝑝𝑝𝑘𝑘

𝑖𝑖  and 𝑅𝑅𝑘𝑘 needed to be extracted to complete the ramp width 
𝐿𝐿𝑘𝑘

𝑖𝑖  the set of blocks of level k between 𝐻𝐻𝑘𝑘
𝑖𝑖  and 𝑅𝑅𝑘𝑘 needed to be extracted to prevent a railing between 

ramps and pit  
𝐷𝐷𝑘𝑘

𝑖𝑖  the set of blocks of level 𝑘𝑘 𝑘 𝑘 immediately below the ramp blocks  𝑝𝑝𝑘𝑘
𝑖𝑖  ∪ 𝐻𝐻𝑘𝑘

𝑖𝑖  
𝑍𝑍𝑘𝑘

𝑖𝑖  the set of blocks of level k outside 𝑝𝑝𝑘𝑘
𝑖𝑖  (in the oposite direction of 𝑅𝑅𝑘𝑘) to avoid designing a pit between 
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ramps and slopes. 
 
 
The variables of the problem are defined as follows: 
 
                               𝑦𝑦𝑏𝑏 = {1 if block 𝑏𝑏 is extracted,

0 otherwise.  
 

𝑥𝑥𝑘𝑘
𝑖𝑖 = {

1      if  all blocks of level k of 𝑠𝑠𝑘𝑘
𝑖𝑖  are the wall side part of the ramp of level k

      and 𝑓𝑓𝑘𝑘
𝑖𝑖 is the first block of the wall side part of the ramp of level 𝑘𝑘 𝑘 1𝑘

0                   otherwise.                                                                                                
 

 
Domain definition of variable y is B, domain definition of index k of variable x is {1,2,...,K}, domain definition of 
index i of variable x is Ik 
 
Therefore, the Single Ramp Design Problem (SRDP), can be formulated as:   
 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)   max ∑ 𝑝𝑝𝑏𝑏 
𝑏𝑏 𝑏 𝑏𝑏

𝑦𝑦𝑏𝑏     +  𝑝𝑝𝑅𝑅𝐾𝐾   + ∑ ∑ 𝑝𝑝𝑅𝑅𝑘𝑘𝑘𝑘
𝑖𝑖 𝑏 𝑖𝑖𝑘𝑘 

𝐾𝐾

𝑘𝑘 𝑘𝑘  
𝑥𝑥𝑘𝑘

𝑖𝑖                                                                       (1) 

                       𝑠𝑠. 𝑠𝑠.         ∑ 𝑥𝑥𝑘𝑘
𝑖𝑖

𝑖𝑖 𝑏 𝑖𝑖𝑘𝑘 | 𝑓𝑓𝑘𝑘
𝑖𝑖 𝑘 𝑜𝑜𝑘𝑘𝑘𝑘

𝑗𝑗
≥ 𝑥𝑥𝑘𝑘𝑘𝑘

𝑗𝑗 (∀𝑘𝑘 𝑘 1𝑘 ∀𝑘𝑘 𝑏 𝑘𝑘𝑘𝑘𝑘𝑘  ) (2)

∑ 𝑥𝑥𝑘𝑘
𝑖𝑖

𝑖𝑖 𝑏 𝑖𝑖𝑘𝑘 

≤ 1 (∀𝑘𝑘 ≥ 1) (3)

          𝑦𝑦𝑏𝑏 ≤ 𝑦𝑦𝑏𝑏𝑏 (∀𝑏𝑏 𝑏 𝑆𝑆𝐶𝐶𝑘 ∀𝑏𝑏𝑏 𝑏 𝑂𝑂𝑏𝑏 ∩  𝑆𝑆𝐶𝐶 ) (4)
∑ 𝑥𝑥𝑘𝑘

𝑖𝑖

𝑖𝑖 𝑏 𝑖𝑖𝑘𝑘 

≤ 𝑦𝑦𝑏𝑏 (∀𝑘𝑘 ≥ 1𝑘 ∀𝑏𝑏 𝑏 𝑂𝑂𝑅𝑅𝑘𝑘𝑘𝑘 ∩  𝑆𝑆𝐶𝐶) (5)

         𝑥𝑥𝑘𝑘
𝑖𝑖 ≤ 𝑦𝑦𝑏𝑏 (∀𝑘𝑘 ≥ 1 𝑘 ∀𝑏𝑏 𝑏  𝑠𝑠𝑘𝑘

𝑖𝑖 ∪ 𝐻𝐻𝑘𝑘
𝑖𝑖 ∪ 𝐿𝐿𝑘𝑘

𝑖𝑖 ) (6)
                 𝑥𝑥𝑘𝑘

𝑖𝑖 + 𝑦𝑦𝑏𝑏 ≤ 1 (∀𝑘𝑘 𝑘 1 𝑘 ∀𝑏𝑏 𝑏  𝑆𝑆𝑘𝑘
𝑖𝑖  ∪ 𝑍𝑍𝑘𝑘

𝑖𝑖 ) (7)
∑ 𝑥𝑥𝑘𝑘

𝑖𝑖

𝑖𝑖 𝑏 𝑖𝑖𝑘𝑘 

≥ 𝑦𝑦𝑏𝑏 (∀𝑘𝑘 ≥ 1 𝑘 ∀𝑏𝑏 𝑏 𝑘𝑘𝑘𝑘𝑘𝑘 \ 𝑆𝑆𝑘𝑘𝑘𝑘 ) (8)

       𝑥𝑥𝑘𝑘
𝑖𝑖 = 0 (∀𝑘𝑘 𝑘 𝑘𝑘 𝑘 ∀𝑘𝑘 𝑏 𝑘𝑘𝑘𝑘 |  {𝑠𝑠𝑘𝑘𝑘𝑘

𝑗𝑗  |  𝑓𝑓𝑘𝑘𝑘𝑘
𝑗𝑗 = 𝑜𝑜𝑘𝑘

𝑖𝑖  } = ∅) (9)
      𝑦𝑦𝑖𝑖 = 0 (∀𝑏𝑏 𝑏 𝑆𝑆)   (10)

 

 
The objective function (1) maximizes the overall profit of the ramp design and corresponds to the profit of all extracted 
blocks. As all reduced pushback blocks are considered as not extracted by our model but are extracted in the reality, 
adding a ramp path between level k and level k - 1 will add the profit of all blocks of Rk-1.  
Constraint (2) ensures the connectivity between ramp paths. Constraint (3) states that there is at most one ramp per 
level. Constraint (4) and constraint (5) prevent the extraction of any block for which all the slope predecessors have 
not been previously extracted. Constraint (6) ensures that for each chosen path, all blocks in the level k elementary 
path, all blocks needed to complete the ramp width and all blocks between ramps and the reduced pushback of level 
k are extracted. Constraint (7) prevents the extraction of blocks immediately below ramp blocks and blocks between 
the ramps and the slope. Constraint (8) guaranties that there is a level k elementary path on level above extracted 
blocks and so prevents the extraction of blocks below the down extremity of bottom ramp. Constraint (9) prevents a 
no connected path from being an eligible path. Constraint (10) prevents the extraction of all reduced pushback blocks 
as they are already taken into account in the objective and in constraint (5) for slope precedence. 
 
Numerical application 
To generate the entry data sets and implement the model, the MineLink library [4] developed at Delphos Mine 
Planning Laboratory at Universidad de Chile was used. 

The SRDP model was applied to two block models. The first, Marvin30, was based on Marvin [7] and consisted of 
53,271 blocks of size 30mx30mx30m. The second Marvin15 was obtained by splitting blocks from the first model 
and was composed of 426,168 cubic blocks with edges of 15 meters.  
The original pushback in both cases was a final pit that was computed with precedence slope angle of 47°, but with 
20 levels of precedence for Marvin15 and 10 levels for Marvin30. The parameters in Table 1 were used to compute 
the economic value of the blocks. The final pit values are presented in Table 2. The results of the ramp designs are 
presented in Table 3. 
 

Table 1: Cost and Price parameters for the valorization of blocks 
Parameter Unit Value 
Mine Cost  US$ / ton 0.9 
Process Cost US$ / ton 4.0 
Au Recovery % 60 
Cu Recovery  % 88 
Au Price US$ / Oz 344 
Cu Price  US$ / lb 0.91 
Selling Cost Au US$ / Oz 5.74 
Selling Cost Cu  US$ / lb 0.33 

 
Table 2: Original pushbacks values and tonnage for Marvin30 and Marvin15 

Block model 
name 

Final pit value 
 MUSD 

Tonnage  
MT 

Marvin30 1,405 543.5 
Marvin15 1,442 516.4 

 
Ramp width of 30 meters and maximum ramp gradient of 10% are parameters used for all the ramp design computes. 
For Marvin30, a pit boundary consisting of two external layers (outside the original pushback) was considered and, 
therefore, the designed pushback contained the original pushback if ramps reached the bottom level of the original 
pushback. For Marvin15, a pit boundary consisting of one internal layer and one external layer was considered, which 
means that the ramp could go outside the original pushback.  
Three cases were considered. For Marvin30, there are M30_fixed_start and M30_free_start, which refer to the initial 
block for the ramp being fixed or not, respectively. For Marvin15, there was only M15_fixed_start, i.e. the starting 
block was fixed. All the elementary paths generated for the three cases were in the counterclockwise directions. Gurobi 
6.5 [8] was used to solve the three case studies with a relative optimality gap of 0.5%. 
 

Table 3: SRDP model ramp design results and tonnages of the designed pushback 
Instance 

name 
# elementary 

paths 
Objective value 

MUSD 
Gap 
% 

Tonnage 
MT 

M30_fixed_start 20,310 1,431 0.35 572.2 
M30_free_start 20,620 1,432 0.49 567.6 
M15_fixed_start 69,990 1,440 0.46 514.2 

 
It was observed that, for Marvin30, the economic values of the designed pushbacks were higher than those for the 
original pushback (which corresponds to a final pit). This was due to using an inter-ramp slope angle of 50° and an 
overall slope angle of 47° for the slope precedence, which resulted to be less restrictive and the solutions were able to 
recover a slightly higher amount of mineral that leads to a better value (up to + 1.9%).  
On the other hand, in the case of Marvin15, the block boundary was tighter (one internal and one external layer, plus 
blocks of size 15mx15mx15m) and, therefore, the differences between the values (0.1%) and tonnages (0.4%) of the 
original and designed pushbacks were minimal.  
Tonnage of ramp design for Marvin30 experiments were higher as compare with the initial pushback tonnage (5.3% 
and 4.4%). This was expected as no internal layer in the boundary forced the pushback to grow. 
Finally, for Marvin15, the model attained a slightly higher economic value (0.6%) with lower tonnage, which was due 
to the increased precision of using smaller blocks.  
Figures 2a and 3a present the ramps in black in result pit for the both instances of Marvin30. Figures 2b and 3b present 
the designed pushback that include reduced pushback blocks that are aggregated by a post processing of SRDP results, 
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ramps and slopes. 
 
 
The variables of the problem are defined as follows: 
 
                               𝑦𝑦𝑏𝑏 = {1 if block 𝑏𝑏 is extracted,

0 otherwise.  
 

𝑥𝑥𝑘𝑘
𝑖𝑖 = {

1      if  all blocks of level k of 𝑠𝑠𝑘𝑘
𝑖𝑖  are the wall side part of the ramp of level k

      and 𝑓𝑓𝑘𝑘
𝑖𝑖 is the first block of the wall side part of the ramp of level 𝑘𝑘 𝑘 1𝑘

0                   otherwise.                                                                                                
 

 
Domain definition of variable y is B, domain definition of index k of variable x is {1,2,...,K}, domain definition of 
index i of variable x is Ik 
 
Therefore, the Single Ramp Design Problem (SRDP), can be formulated as:   
 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)   max ∑ 𝑝𝑝𝑏𝑏 
𝑏𝑏 𝑏 𝑏𝑏

𝑦𝑦𝑏𝑏     +  𝑝𝑝𝑅𝑅𝐾𝐾   + ∑ ∑ 𝑝𝑝𝑅𝑅𝑘𝑘𝑘𝑘
𝑖𝑖 𝑏 𝑖𝑖𝑘𝑘 

𝐾𝐾

𝑘𝑘 𝑘𝑘  
𝑥𝑥𝑘𝑘

𝑖𝑖                                                                       (1) 

                       𝑠𝑠. 𝑠𝑠.         ∑ 𝑥𝑥𝑘𝑘
𝑖𝑖

𝑖𝑖 𝑏 𝑖𝑖𝑘𝑘 | 𝑓𝑓𝑘𝑘
𝑖𝑖 𝑘 𝑜𝑜𝑘𝑘𝑘𝑘

𝑗𝑗
≥ 𝑥𝑥𝑘𝑘𝑘𝑘

𝑗𝑗 (∀𝑘𝑘 𝑘 1𝑘 ∀𝑘𝑘 𝑏 𝑘𝑘𝑘𝑘𝑘𝑘  ) (2)

∑ 𝑥𝑥𝑘𝑘
𝑖𝑖

𝑖𝑖 𝑏 𝑖𝑖𝑘𝑘 

≤ 1 (∀𝑘𝑘 ≥ 1) (3)

          𝑦𝑦𝑏𝑏 ≤ 𝑦𝑦𝑏𝑏𝑏 (∀𝑏𝑏 𝑏 𝑆𝑆𝐶𝐶𝑘 ∀𝑏𝑏𝑏 𝑏 𝑂𝑂𝑏𝑏 ∩  𝑆𝑆𝐶𝐶 ) (4)
∑ 𝑥𝑥𝑘𝑘

𝑖𝑖

𝑖𝑖 𝑏 𝑖𝑖𝑘𝑘 

≤ 𝑦𝑦𝑏𝑏 (∀𝑘𝑘 ≥ 1𝑘 ∀𝑏𝑏 𝑏 𝑂𝑂𝑅𝑅𝑘𝑘𝑘𝑘 ∩  𝑆𝑆𝐶𝐶) (5)

         𝑥𝑥𝑘𝑘
𝑖𝑖 ≤ 𝑦𝑦𝑏𝑏 (∀𝑘𝑘 ≥ 1 𝑘 ∀𝑏𝑏 𝑏  𝑠𝑠𝑘𝑘

𝑖𝑖 ∪ 𝐻𝐻𝑘𝑘
𝑖𝑖 ∪ 𝐿𝐿𝑘𝑘

𝑖𝑖 ) (6)
                 𝑥𝑥𝑘𝑘

𝑖𝑖 + 𝑦𝑦𝑏𝑏 ≤ 1 (∀𝑘𝑘 𝑘 1 𝑘 ∀𝑏𝑏 𝑏  𝑆𝑆𝑘𝑘
𝑖𝑖  ∪ 𝑍𝑍𝑘𝑘

𝑖𝑖 ) (7)
∑ 𝑥𝑥𝑘𝑘

𝑖𝑖

𝑖𝑖 𝑏 𝑖𝑖𝑘𝑘 

≥ 𝑦𝑦𝑏𝑏 (∀𝑘𝑘 ≥ 1 𝑘 ∀𝑏𝑏 𝑏 𝑘𝑘𝑘𝑘𝑘𝑘 \ 𝑆𝑆𝑘𝑘𝑘𝑘 ) (8)

       𝑥𝑥𝑘𝑘
𝑖𝑖 = 0 (∀𝑘𝑘 𝑘 𝑘𝑘 𝑘 ∀𝑘𝑘 𝑏 𝑘𝑘𝑘𝑘 |  {𝑠𝑠𝑘𝑘𝑘𝑘

𝑗𝑗  |  𝑓𝑓𝑘𝑘𝑘𝑘
𝑗𝑗 = 𝑜𝑜𝑘𝑘

𝑖𝑖  } = ∅) (9)
      𝑦𝑦𝑖𝑖 = 0 (∀𝑏𝑏 𝑏 𝑆𝑆)   (10)

 

 
The objective function (1) maximizes the overall profit of the ramp design and corresponds to the profit of all extracted 
blocks. As all reduced pushback blocks are considered as not extracted by our model but are extracted in the reality, 
adding a ramp path between level k and level k - 1 will add the profit of all blocks of Rk-1.  
Constraint (2) ensures the connectivity between ramp paths. Constraint (3) states that there is at most one ramp per 
level. Constraint (4) and constraint (5) prevent the extraction of any block for which all the slope predecessors have 
not been previously extracted. Constraint (6) ensures that for each chosen path, all blocks in the level k elementary 
path, all blocks needed to complete the ramp width and all blocks between ramps and the reduced pushback of level 
k are extracted. Constraint (7) prevents the extraction of blocks immediately below ramp blocks and blocks between 
the ramps and the slope. Constraint (8) guaranties that there is a level k elementary path on level above extracted 
blocks and so prevents the extraction of blocks below the down extremity of bottom ramp. Constraint (9) prevents a 
no connected path from being an eligible path. Constraint (10) prevents the extraction of all reduced pushback blocks 
as they are already taken into account in the objective and in constraint (5) for slope precedence. 
 
Numerical application 
To generate the entry data sets and implement the model, the MineLink library [4] developed at Delphos Mine 
Planning Laboratory at Universidad de Chile was used. 

The SRDP model was applied to two block models. The first, Marvin30, was based on Marvin [7] and consisted of 
53,271 blocks of size 30mx30mx30m. The second Marvin15 was obtained by splitting blocks from the first model 
and was composed of 426,168 cubic blocks with edges of 15 meters.  
The original pushback in both cases was a final pit that was computed with precedence slope angle of 47°, but with 
20 levels of precedence for Marvin15 and 10 levels for Marvin30. The parameters in Table 1 were used to compute 
the economic value of the blocks. The final pit values are presented in Table 2. The results of the ramp designs are 
presented in Table 3. 
 

Table 1: Cost and Price parameters for the valorization of blocks 
Parameter Unit Value 
Mine Cost  US$ / ton 0.9 
Process Cost US$ / ton 4.0 
Au Recovery % 60 
Cu Recovery  % 88 
Au Price US$ / Oz 344 
Cu Price  US$ / lb 0.91 
Selling Cost Au US$ / Oz 5.74 
Selling Cost Cu  US$ / lb 0.33 

 
Table 2: Original pushbacks values and tonnage for Marvin30 and Marvin15 

Block model 
name 

Final pit value 
 MUSD 

Tonnage  
MT 

Marvin30 1,405 543.5 
Marvin15 1,442 516.4 

 
Ramp width of 30 meters and maximum ramp gradient of 10% are parameters used for all the ramp design computes. 
For Marvin30, a pit boundary consisting of two external layers (outside the original pushback) was considered and, 
therefore, the designed pushback contained the original pushback if ramps reached the bottom level of the original 
pushback. For Marvin15, a pit boundary consisting of one internal layer and one external layer was considered, which 
means that the ramp could go outside the original pushback.  
Three cases were considered. For Marvin30, there are M30_fixed_start and M30_free_start, which refer to the initial 
block for the ramp being fixed or not, respectively. For Marvin15, there was only M15_fixed_start, i.e. the starting 
block was fixed. All the elementary paths generated for the three cases were in the counterclockwise directions. Gurobi 
6.5 [8] was used to solve the three case studies with a relative optimality gap of 0.5%. 
 

Table 3: SRDP model ramp design results and tonnages of the designed pushback 
Instance 

name 
# elementary 

paths 
Objective value 

MUSD 
Gap 
% 

Tonnage 
MT 

M30_fixed_start 20,310 1,431 0.35 572.2 
M30_free_start 20,620 1,432 0.49 567.6 
M15_fixed_start 69,990 1,440 0.46 514.2 

 
It was observed that, for Marvin30, the economic values of the designed pushbacks were higher than those for the 
original pushback (which corresponds to a final pit). This was due to using an inter-ramp slope angle of 50° and an 
overall slope angle of 47° for the slope precedence, which resulted to be less restrictive and the solutions were able to 
recover a slightly higher amount of mineral that leads to a better value (up to + 1.9%).  
On the other hand, in the case of Marvin15, the block boundary was tighter (one internal and one external layer, plus 
blocks of size 15mx15mx15m) and, therefore, the differences between the values (0.1%) and tonnages (0.4%) of the 
original and designed pushbacks were minimal.  
Tonnage of ramp design for Marvin30 experiments were higher as compare with the initial pushback tonnage (5.3% 
and 4.4%). This was expected as no internal layer in the boundary forced the pushback to grow. 
Finally, for Marvin15, the model attained a slightly higher economic value (0.6%) with lower tonnage, which was due 
to the increased precision of using smaller blocks.  
Figures 2a and 3a present the ramps in black in result pit for the both instances of Marvin30. Figures 2b and 3b present 
the designed pushback that include reduced pushback blocks that are aggregated by a post processing of SRDP results, 
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with also ramps in black. For Figures 2a and 3a, all blocks of the designed pushback but ramps have been taken away 
to allow to see the ramp paths.  
 

  
  (a) Isometric view of ramps in result pushback         (b) Lateral west view of ramp design 

 
Figure 2:  Results for M30_ fixed_start (ramp in black) 

 
   

  
(a) Isometric view of ramps in result pushback         (b) Lateral east view of Ramp design 

 
Figure 3:  Results for M30_ free_start (ramp in black) 

 
Figure 4 (a) shows the ramps in black in the result pit of Marvin15_start_fixed. Figure 4 (b) presents the designed 
pushback that was the result of ramp design computed for Marvin15_start_fixed. The graphical representation of the 
results, as shown in Figures 2, 3 and 4, were generated with the academic software DOPPLER [3].   
 

  
(a) Isometric view of ramps in result pushback         (b) Lateral west view of Ramp design 

 
Figure 4:  Results for M15_ fixed_start (ramp in black) 

  
Conclusions 
We presented a linear optimization model that aims to assist the planner in the design of the ramps for an open pit 
operation with an objective to maximize the value of the pushback that includes ramps. The model was created based 
on an original pushback and generated a designed pushback, which aimed to provide a guide to the planner to analyze 
different alternatives and scenarios quickly without the need to perform an actual design.  
The model was implemented and applied to three case studies, showing consistent results obtained with the branch 
and bound. The selection of the pit boundary impacts the extracted tonnage of the designed pushback and as the 
number of external layers included in the analysis grows, the tonnage increases.  

This initial analysis provides an excellent basis to extend the model to consider multiple ramp design and dynamic 
cases with several pushbacks or phases. In addition, as the model considers the block values, the impact of the location 
of waste dumps or stocks and variation in truck fleet could be studied with this model. 
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with also ramps in black. For Figures 2a and 3a, all blocks of the designed pushback but ramps have been taken away 
to allow to see the ramp paths.  
 

  
  (a) Isometric view of ramps in result pushback         (b) Lateral west view of ramp design 

 
Figure 2:  Results for M30_ fixed_start (ramp in black) 

 
   

  
(a) Isometric view of ramps in result pushback         (b) Lateral east view of Ramp design 

 
Figure 3:  Results for M30_ free_start (ramp in black) 

 
Figure 4 (a) shows the ramps in black in the result pit of Marvin15_start_fixed. Figure 4 (b) presents the designed 
pushback that was the result of ramp design computed for Marvin15_start_fixed. The graphical representation of the 
results, as shown in Figures 2, 3 and 4, were generated with the academic software DOPPLER [3].   
 

  
(a) Isometric view of ramps in result pushback         (b) Lateral west view of Ramp design 

 
Figure 4:  Results for M15_ fixed_start (ramp in black) 

  
Conclusions 
We presented a linear optimization model that aims to assist the planner in the design of the ramps for an open pit 
operation with an objective to maximize the value of the pushback that includes ramps. The model was created based 
on an original pushback and generated a designed pushback, which aimed to provide a guide to the planner to analyze 
different alternatives and scenarios quickly without the need to perform an actual design.  
The model was implemented and applied to three case studies, showing consistent results obtained with the branch 
and bound. The selection of the pit boundary impacts the extracted tonnage of the designed pushback and as the 
number of external layers included in the analysis grows, the tonnage increases.  

This initial analysis provides an excellent basis to extend the model to consider multiple ramp design and dynamic 
cases with several pushbacks or phases. In addition, as the model considers the block values, the impact of the location 
of waste dumps or stocks and variation in truck fleet could be studied with this model. 
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Discrete-event simulation (DES) represents a computational methodology to evaluate dynamic 
systems and to optimize stochastic processes, whereby a mining operation is modelled as a 
discrete sequence of events in time. Today, DES is widely accepted and used as a computational 
tool for production planning, equipment selection and haulage optimization. By contrast, DES has 
not yet been applied to help with long-term mine planning. This is despite the fact that the high 
complexity of mining processes in combination with challenging market situation forces 
companies to adopt new technologies and to rethink their organizational strategies to deliver 
greater technical and economic efficiencies. This paper presents the benefits and limitations of 
DES to long-term mine planning. Modelling was performed in an underground mine that is owned 
and operated by Knauf Gips KG. The case study points out possibility of capturing the dynamic 
mining progress over a period of ten years applying DES. Simulating multiple scenarios leads to 
improved decision-making regarding possible changes in the mining method. In addition, the 
applied simulation allowed greater insights into production schedules and required mine 
development that could lead to better economic and technological efficiencies. Thus, DES 
represents a valuable computational tool for long-term mine planning. 
 
 

Introduction 
Within the mining industry, there is an increasing need to ensure the translation of operational objectives into 
executable plans. High capital expenditures of mining operations and high level of uncertainties lead to risky 
investments and require detailed planning procedure. Thus, the complex planning approach has necessitated the 
search for more scientific and technological innovations that enable profitable mining operations such as simulation 
studies. First applications of stochastic simulation of mining processes have been reported by Rist [1]. Since then, 
multiple studies have proven the enormous potential of simulation as a powerful computational methodology for 
analyzing the impact of technological changes of complex systems. Discrete-event simulation (DES) represents the 
process of codifying the behavior of dynamic systems as an ordered sequence of well-defined events. In this context, 
simulation refers to the imitation of the behavior of actual systems over time and allows testing of different planning 
scenarios [2].  

Since early studies focused mainly on limited parts of the mining process, such as equipment selection or truck 
allocation, more recent studies aimed at taking into account more parts of the mining value chain [3]. Still, the main 
application field of DES generally covers allocation and dispatch problems [4], haulage optimization [5] and general 
equipment selection [6]. Besides that, Askari-Naseb et al. [7] have proven the benefit of linking DES to short-term 
mine plans of truck-and-shovel operations. Greberg & Sundqvist [3] executed another example of applying DES 
outside the scope by using simulation to improve mine planning. Even though the authors have pointed out basic 
applicability of simulation to mine planning, they concluded that the time has yet to come when simulation is in 
daily use by mine planners. The reason can be seen in the lack of effective, flexible and more importantly capable 
software to simulate processes along the entire mining value chain. The few available mining simulators based on 
DES, are either suitable for open pit or only for underground applications, or strongly limited to predefined modules. 
Compared to the limited amount of mining simulators, the market of DES software in logistics or the automotive 
industry is heavily saturated. The high level of customization enables the adaption of these programs to the specific 
requirements of the mining sector and therefore the long-standing experience of the automotive industry can be used 
to improve technical and economic efficiency of mining operations [8].  

The main objective of this research project is the further integration of simulation tools into mine design and 
planning applications and accordingly the extension of the application field of DES. On the basis of a tailor-made 


