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ABSTRACT  

In recent years, cloud computing has been adopted in many industrial and academic environments, as a 

way to improve the efficiency of the individual execution times by sharing resources on servers with 

higher compute and storage capacity. The platform used in this work follows the Virtual Laboratory 

systems of CSIRO, supported by NeCTAR which is a research cloud computing system based on 

OpenStack which offer up to 32,000 cores. It can be accessed through a user friendly scientific workflow 

platform providing geoscientists with an integrated environment that exploits e-Research tools and cloud 

computing technologies. 

Using the Virtual Geophysical Laboratory (VGL) as the main concept, the objective is to provide a system 

that allows researchers to collaborate and execute processes concerning geometallurgical applications on 

a web environment, taking advantage of the cloud infrastructure provided by NeCTAR. This system is 

called Abeja Virtual Geometallurgy Laboratory (Abeja VGML). Abeja was built to support task 

management, which includes the setup of virtual machines on demand, remote execution of 

geometallurgical analysis scripts, fault tolerance features and task workflow support. 

The system consists of a main server, which is configured as an entry point to receive all task requests. A 

front-end works as a web application, allowing authenticated users to choose the hardware resources, 

script parameters, files upload/download files, task execution control, creation of pipelines to run chained 

geometallurgical processes and to receive real-time notifications and callbacks through a dedicated 

channel. As a result, the platform has been used as a collaborative tool allowing both CSIRO and 

University of Chile researchers to develop cloud computing ready applications, allowing to solve 

complex task workflows through a user friendly and modern web based interface. 
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INTRODUCTION 

Developing a distributed execution environment involves many non-trivial aspects: efficient memory 

management, parallel/distributed computing, hardware usage, task and big data handling and 

collaborative development among others. Several software solutions allow software developers to make 

use of cluster or grid computers to distribute workload and make use of available computational 

resources [Celery (2016), Gridgain (2016), IPython Parallel (May 2016), Pandas (2016)]. On the other hand, 

common researchers should not focus on programming strategies but they could benefit from running 

large numerical models, executing several scenarios in parallel or organizing large calculations in task 

workflows. 

Geometallurgy is one of the disciplines were executing a number of related processes is currently very 

expensive in terms of time processing and hardware requirements. Solving numerical models involve 

sequences of interdependent steps (pre-processing, evaluation, reduction, extraction) and generally they 

are characterized by unknown parameters inferred from input data, which adds undesirable uncertainty 

to the final models [Deutch, C. V. (2013)]. The latter issue is commonly tackled using conditional 

simulations, where several scenarios are generated with different setup parameters to address the 

uncertainty on the estimation of those parameters, leading to heavy computational workloads. 

In this paper we present Abeja Virtual Geometallurgy Laboratory (Abeja VGML) a novel platform that 

exploits eResearch tools and Cloud computing technology in this particular field. The project starts from 

the collaboration between CSIRO International Research and the University of Chile from the idea of 

transforming the current CSIRO VGL (Virtual Geophysics Laboratory) [VGL (2016)] into an environment 

that allows executing on-line processes applied to the Geometallurgy. VGL is a collaboration between 

CSIRO, Geoscience Australia (GA), and the National Computational infrastructure (NCI) and has been 

funded by the Federal Government’s Education Investment Funds through NeCTAR [Nectar (2016)]. 

Abeja VGML is equipped with an interface that allows researchers to create and execute chained 

processes concerning to Geometallurgy, on a web environment, taking the advantage of the cloud 

infrastructure provided by NeCTAR. The underlying architecture that allows the remote execution will 

be described in detail in the next section, followed by a case study to illustrate the operation of the entire 

system. 

GEOMETALLURGICAL APPLICATION ON CLOUD SERVICES  

Architecture Overview 

Abeja VGML is composed by a) a front end, b) a back end and c) the cloud computing. A main server, 

which contains the front end and the back end, receive input data from users and manage the execution 

of processes. The cloud is composed by several amount of virtual machines, preconfigured on-demand to 

receive and process all the requirements sent by the main server. 
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a. Front end. Developed using a combination of programming languages and technologies: HTML5, 

JavaScript and CSS. It works as a web application, allowing authenticated user to choose the hardware 

resources, script parameters, file upload/download, creation and configuration of pipelines to run 

chained geometallurgical processes and to receive real-time notifications from the back end. 

b. Back end. Composed by a Python application server, handles the user requirements and allocate the 

hardware resources using a specific NeCTAR REST API (novaclient [Novaclient (2016), Openstack 

(2016)]). When the Virtual Machine (in the cloud) is up and running, the back end schedules processes 

form the users through the Giulietta framework [14]. During the execution and until it is finished, the 

process will send different notifications and callbacks, which are listened and routed by the back end to 

the front end. Finally, after the last notification, the back end releases the hardware resources using the API 

again. 

c. Cloud. Consist on virtual or real machines that can be configured and used on-demand. In this work, the 

cloud corresponds to NeCTAR cloud computing, which provides a certain amount of virtual machines. 

This cloud is responsible for receiving and executing the processes that are sent by the back end on the 

main server. We use a pre-configured image that contains software requirements for task execution and 

the same version of Giulietta framework installed on the back end. 

 

 

Figure 1 Geometallurgical execution flow on cloud services (NeCTAR) 

Process execution 

In order to execute applications in the described system, it is necessary to create a pipeline of execution. 

The users can create one or more processes in each pipeline. Those processes can be executed sequentially 

or in a distributed way, depending on the user’s choice. As a general rule, each process receives a list of 

the input data (called data collection) and as output the process must also return a data collection. Those 
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data collections can be variable in quantity on each process stages. After every executed stage, data 

collections can be viewed depending on their datatype (tables, text files, images, graphs, among others). 

Abeja VGML provides tools for upload/download files and simple visualization tools to access each data 

types through the front end (using a web browser). 

After receiving the starting order from the front end, the back end will extract from the pipeline each 

process at the time for execution. The back end prepares and configures properly a virtual machine (VM), 

and after is up and running, it will send the process for execution. Input data (as data collection) is handled 

seamlessly using a distributed file system, and it is available on each stage. In case that the process has 

finished the VM will be dismissed. The described execution flow is showed in Figure 1. 

When the user has selected a pipeline for sequential execution, the back end will continue operating over 

the same VM before dismissing it. Figure 2 shows the execution of a sequential pipeline. The back end 

creates a single instance of the process and configures the input data. Each stage of process execution is 

coordinated by the back end using properly message system and their data collection is shared through the 

distributed file system. The processes may return or not a data collection, for instance could only create 

graphs for analysis.  

 

Figure 2 Pipeline sequential execution: back end uses the output data from a process as input data to the next one. 

Pipeline distributed execution, is handled by the back end with a simple strategy: separates the data and 

the configuration parameters for the script into a defined number of instances. Each instance will be 

executed on a dedicated VM or any available cores on already running VM. Figure 3 shows the execution 

flow for a distributed pipeline. After every script instance is finished, the back end can run a final script to 

do post-process into the output data (as any reduce operation). Finally, after receiving the results 

notifications (end of processes) the back end dismisses the VM asynchronously, freeing resources for other 

executions. 
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Figure 3 Pipeline distributed execution: back end coordinate the execution of scripts using each data in the collection. 

CASE STUDY  

The problem of modeling geometallurgical variables is well known as very demanding in time processing 

and hardware requirements [11]. An example of the workflow for solving numerical models involve 

sequences of interdependent steps (pre-processing, evaluation, reduction, extraction) as showed in Figure 

4. Starting from the original data, different pre-processing and cleaning must be performed in order to 

continue with the geostatistical modeling to mine planning strategies. Each of those steps has its own 

difficulties. In this paper we show the execution of the initial stages of the mentioned workflow, with 

data cleaning and exploratory data analysis tools to make a proof-of-concept with distribution and 

parallel execution, in order to prepare the whole system to further steps in the geometallurgical 

workflow. 

In most data mining applications, the datasets often contain ambiguous, misleading, missing or duplicate 

data, which if not treated can spread to the next stages of the process and could lead to poor quality 

results or misinterpreted conclusions. Preprocessing data tackles these problems and takes an important 

role in workflows mining [Kotsiantis (2006), Han, J. (2011), Shi, G. (2013), García, S. (2015)]. In geoscience 

therefore, it is essential to have a good set of tools that ensure a correct preprocessing stage [Shi, G. 

(2013)]. The proposed case study is focused on three preprocessing tasks created on the described 

platform, each of which can be used in applications involving geometallurgical data. 
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Figure 4 Example of a geometallurgical workflow. 

Input data. We consider datasets consisting of collections of values, which can be either numbers 

(quantitative case) or strings (categorical case), resulting from the observation of several regionalized 

variables related to spatially distributed rock properties [Matheron, G. (1971)]. As it is standard in data 

mining applications, these datasets are organized in the form of a data table where the columns 

correspond to variables and rows correspond to the observations of these variables. Additional 

information is included as an array of metadata indicating various attributes associated with each 

variable: source (space coordinates, chemical, hyperspectral, geometallurgical, geological, etc.), type 

(numeric, categorical, etc.), unit of measurement (percentage, parts per million, etc.) and range of 

admissible values, among others. In this context, we assume that data-tables contains variables associated 

to north, east, depth and hole identifier, that determines physical spatial locations and sampling units. 

Integration. Is a process to bring both, information from the meta-data, and the values of the data to a 

consistent and standard format. The process reads the input file, incorporates the metadata information, 

make some changes in the variable names and add columns if required and reorders the columns of the 

file. The output of this process is a csv that stores the processed data. 

Cleaning. Identify or remove erroneous observations that potentially distort the subsequent analysis. The 

process reads a csv input file, encoded (with Nan, say) missing and non-admissible values, identify and 

remove duplicated observations and filter-out useless observations according to given configurations of 

Nan (ex: at any spatial variable, at all the geochemical, etc.). The output is a csv file storing the cleaned 

data, a csv file with a summary of the cleaning operation results and several images including histograms 

highlighting removed and/or marked data. 

Imputation. Consists on a set of tools for visualization and imputation of missing data. After reading the 

input csv file, missing values are fill-in by a predictive mean matching imputation method [Buuren, S., & 

Groothuis-Oudshoorn, K. (2011)]. The output is one or several completed datasets (csv files) and charts 

(image files), showing observed, missing and imputed values.  
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Figures 5 and 6 were obtained after the execution of the pipeline with the three preprocessing tasks, 

applied to an input data set consisting of observations from 9 geometallurgical variables. Figure 5 shows 

a scatter matrix of East, North, Depth and Fe, with colored tags according to observed (blue circles) and 

missing (yellow crosses or vertical ticks) Fe values [Templ, M.(2011)]. It can be noticed that the missing Fe 

values are uniformly distributed in the spatial domain defined by East, North and Depth variables. 

Figure 6 illustrates multiple imputation results [Buuren, S., & Groothuis-Oudshoorn, K. (2011)], with 5 

imputed datasets. Each panel corresponds to a strip plot of a given variable where observations are 

colored according to observed/inputted (blue/red) values and shown across the original (value 0) and 

imputed data sets. Observe that the distribution of observed and imputed values is similar, as it is 

expected from the method. 

The execution of this pipeline in Abeja VGML allowed the user to run the desired task on different 

scenarios (data sets), having to configure only the parameters, leading to a semi-automated execution. At 

the end of the pipeline execution, the user receives the proper end-notification and the system is ready to 

perform the exploratory data analysis.  

Figure 5 Scatter matrix. Observations with observed 

and missing Fe values are marked with blue circles 

and yellow crosses/ticks respectively.  

 

 

Figure 6 Strip plot of observed (blue) and imputed 

(red) data. 

CONCLUSIONS AND FUTURE WORK 

A platform for executing sequential and distributed processes in a cloud ambient, called Abeja VGML, 

was presented in this paper. The case study was based on automatic pipelined preprocessing steps for 

geometallurgical input data, to demonstrate general usage capabilities. That exercise showed the 

flexibility of Abeja VGML to configure a set of automated task, where the user initially setup the input 
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parameters for each stage and then run the whole process in an unattended way. In the pipeline 

execution, the platform automatically saves checkpoints allowing the user to reconfigure and re-execute 

processes in case of errors, resuming from the last successful checkpoint. Giulietta callbacks notifications 

provide an essential feature in order to achieve a rich user interface during execution. Finally, we show 

the capability to generate processed results in the form of data files collection and plots (scatter matrix, 

histograms and strip plots) for further validation. 

The simplicity in the usability of the system, gives a new opportunity to semi-automate tasks that 

traditionally requires a lot of attention and can be very tedious. Abeja VGML helps users to focus on 

process creating and results analysis instead of details about back end or cloud complexities. With this 

system, the user can run several scenarios with different parameters each, in order to compare and reduce 

the uncertainty associated to the geometallurgical modeling. 

Nectar was used as a cloud infrastructure; however, Abeja VGML can be adapted to current available 

cloud services that provide configurable API (E.g., Microsoft Azure, Amazon Web Services and Google 

Cloud, among others). Distributed and sequential pipeline execution is not exclusive to geometallurgical 

field; it could be used on applications in other mining areas like resources evaluation or mine planning 

but also, on other fields demanding high computational resources (E.g., natural sciences, data mining, 

financial data analysis and telecommunications industry), leading Abeja VGML as a platform with a 

promising transferable product to industry. 
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